Những câu hỏi liên quan
Xem chi tiết
NC
22 tháng 2 2019 lúc 22:43

Với n nguyên dương.

Đặt A=\(n^{2015}+n+1=\left(n^{2015}-n^2\right)+\left(n^2+n+1\right)=n^2\left(n^{2013}-1\right)+\left(n^2+n+1\right)\)

\(=n^2\left(\left(n^3\right)^{.671}-1\right)+\left(n^2+n+1\right)\)

Mà : \(\left(n^3\right)^{.671}-1⋮\left(n^3-1\right)\)

 và       \(n^3-1=\left(n-1\right)\left(n^2+n+1\right)\)

=> \(\left(n^3\right)^{671}-1⋮\left(n^2+n+1\right)\)

=> \(A⋮n^2+n+1\)

Theo bài ra: A là số nguyên tố

=> \(\orbr{\begin{cases}A=n^2+n+1\\n^2+n+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n^{2015}=n^2\\n^2+n=0\end{cases}\Leftrightarrow}}\orbr{\begin{cases}n=1\left(tm\right)\\n=0;n=-1\left(loai\right)\end{cases}}\)vì n nguyên dương

Vậy n=1

Bình luận (0)
BA
Xem chi tiết
ZZ
26 tháng 8 2020 lúc 17:41

Xét n=1 thì biểu thức A = 3

Xét n>1:

Ta có: \(A=n^{2015}+n+1\)

\(=\left(n^{2015}-n^2\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n^{2013}-1\right)+\left(n^2+n+1\right)\)

Dễ nhận ra \(n^{2013}-1⋮n^3-1\Rightarrow n^{2013}-1=k\left(n^3-1\right)=k\left(n-1\right)\left(n^2+n+1\right)\)

\(\Rightarrow n^2\left(n^{2013}-1\right)=k\left(n-1\right)n^2\left(n^2+n+1\right)=k'\left(n^2+n+1\right)\)

\(\Rightarrow A=k'\left(n^2+n+1\right)+\left(n^2+n+1\right)=\left(n^2+n+1\right)\left(k'+1\right)\)là hợp số

Vậy n=1

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
CC
Xem chi tiết
TP
29 tháng 5 2019 lúc 21:09

bn tham khảo câu hỏi tương tự nha!

Bình luận (0)
NH
Xem chi tiết
ND
Xem chi tiết
DK
Xem chi tiết
TM
Xem chi tiết
NQ
20 tháng 2 2018 lúc 16:20

tự túc là hạnh phúc

Bình luận (0)
ML
Xem chi tiết