Những câu hỏi liên quan
NA
Xem chi tiết
HP
Xem chi tiết
NM
Xem chi tiết
DH
Xem chi tiết
TT
Xem chi tiết
NH
12 tháng 3 2020 lúc 9:34

 a+b=c+d => a=c+d-b 

thay vào ab+1=cd 

=> (c+d-b).b+1=cd 

<=> cb+db-cd+1-b2=0 

<=> b(c-b)-d(c-b)+1=0 

<=> (b-d)(c-b)=-1 

a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 

mà (b-d)(c-b)=-1 nên có 2 TH: 

TH1: b-d=-1 và c-b=1 

<=> d=b+1 và c=b+1 

=> c=d 

TH2: b-d=1 và c-b=-1 

<=> d=b-1 và c=b-1 

=> c=d 

Vậy từ 2 TH ta có c=d

Bình luận (0)
 Khách vãng lai đã xóa
H24
12 tháng 3 2020 lúc 16:02

ây zà mấy ngài à

Bình luận (0)
 Khách vãng lai đã xóa
TM
Xem chi tiết
KK
Xem chi tiết
KN
2 tháng 2 2019 lúc 14:40

                          Giải

Ta có : a + b = c + d suy ra a = c + d - b 

Thay a = c + d - b vào đẳng thức ab + 1 = cd , ta được :

\(b\left(c+d-b\right)+1=cd\)

\(\Leftrightarrow cb+bd-b^2-cd=-1\)

\(\Leftrightarrow\left(cb-b^2\right)+\left(bd-cd\right)=-1\)

\(\Leftrightarrow b\left(c-b\right)+d\left(c-b\right)=-1\)

\(\Leftrightarrow\left(b+d\right)\left(c-b\right)=-1\)

\(\Rightarrow b+d=-\left(c-b\right)\)

\(\Rightarrow b+d=-c+b\)

\(\Rightarrow c=d\left(đpcm\right)\)

Bình luận (0)
BQ
Xem chi tiết
H24
5 tháng 4 2015 lúc 9:03

a) Vì (n + 2) - (n - 1) = 3 chia hết cho 3 nên n + 2 và n - 1 cùng chia hết cho 3 hoặc cùng không chia hết cho 3.

*) Nếu n + 2 và n - 1 cùng chia hết cho 3 \(\Rightarrow\)(n + 2)(n - 1) chia hết cho 9.

Mà 12 không chia hết cho 9

\(\Rightarrow\)(n + 2)(n - 1) + 12 không chia hết cho 9.

*) Nếu n + 2 và n - 1 cùng không chia hết cho 3 \(\Rightarrow\)(n + 2)(n - 1) không chia hết cho 3 \(\Rightarrow\)(n + 2)(n - 1) + 12 không chia hết cho 3 \(\Rightarrow\)(n + 2)(n - 1) + 12 không chia hết cho 9

Vậy (n - 1)(n + 2) + 12 không chia hết cho 9

b) ab + 1 = cd.(1)

 a + b = c + d \(\Rightarrow\)a = c + d - b.

Thay a vào (1) ta có :

(c + d - b).b + 1 = cd

\(\Rightarrow\)cb + db - b2 + 1 = cd

\(\Rightarrow\) 1                      = cd - cb - db + b2

\(\Rightarrow\) 1                      = (cd - cb) - (db - b2)

\(\Rightarrow\) 1                      = c(d - b) - b(d - b)

\(\Rightarrow\) 1                      = (c - b)(d - b)

\(\Rightarrow\) c - b = d - b

\(\Rightarrow\)c = d (đpcm)

 

 

Bình luận (0)
BA
Xem chi tiết
PY
13 tháng 8 2018 lúc 7:56

  a+b=c+d => a=c+d-b 
thay vào ab+1=cd 
=> (c+d-b)*b+1=cd 
<=> cb+db-cd+1-b^2=0 
<=> b(c-b)-d(c-b)+1=0 
<=> (b-d)(c-b)=-1 
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 
mà (b-d)(c-b)=-1 nên có 2 TH: 
TH1: b-d=-1 và c-b=1 
<=> d=b+1 và c=b+1 
=> c=d 
TH2: b-d=1 và c-b=-1 
<=> d=b-1 và c=b-1 
=> c=d 
Vậy từ 2 TH ta có c=d.

Bình luận (0)