A= |36x−5y||36x−5y| với x,y là các số tự nhiên khác 0. Tìm GTNN của biểu thức A.
A= |36x−5y| với x,y là các số tự nhiên khác 0. Tìm GTNN của biểu thức A.
Cho x;y;z>0 ;x+y+z=1
tìm giá trị nhỏ nhất của biểu thức
P=\(\frac{15x^2}{z}+\frac{5y^2}{36x}+\frac{24z^2}{25y}\)
Cho A= |36x−5y| với x,y là các số tự nhiên khác 0. Tìm GTNN của biểu thức A.
GTNN của \(36x^2+5y^2+12x-1\)
36x2+5y2+12x-1
=36x2+12x+1+5y2-2
=(6x+1)2+5y2-2\(\ge\)-2
Dấu "=" xảy ra khi :
6x+1=0 và y=0
x =\(\frac{-1}{6}\) và y=0
Vậy GTNN của 36x2+5y2+12x-1 là -2 tại x=\(\frac{-1}{6}\)và y=0
a,cho các số x,y,z khác 0 thoả mãn
\(x-2y+\frac{z}{y}=z-2x+\frac{y}{x}=x-2z-\frac{y}{z}\).Tính giá trị biểu thức A=\(\left(1+\frac{y}{x}\right)\times\left(1+\frac{y}{x}\right)=\left(1+\frac{x}{z}\right)+2020\)
b, tìm các số tự nhiên x,y thoả mãn xy+4x=35+5y
c, tìm các số tự nhiên x,y thoả mãn 2^/x/+y^2+y=2x+1
1. Tam giác ABC vuông tại A có BC = 30cm và AB:AC = 3:4. Khi đó AB=?
2. GTNN của A=|−x+7/3|+|−x−11/3|−17
3. Với x nguyên, tìm GTNN của B=4x+3/−2x+1
4. Tìm số tự nhiên a biết 12;20;a là độ dài các cạnh của 1 tam giác vuông.
5. Tìm các số tự nhiên x;y biết 2x+1.3y=36x
6. Trong mặt phẳng tọa độ Oxy, vẽ điểm A(-3;4). Khoảng cách từ A đến gốc tọa độ bằng bao nhiêu?
7. Tìm các số nguyên tố x;y sao cho x2−2y2=1
Câu 2:
Vậy GTNN của A=-11
Câu 3:
GTNN của khi -2x+1 nhỏ nhất. Vậy -2x+1=1(vì mẫu số khác 0 mà) nên x=0
vậy GTNN của B là 3
Câu 4
Trong tam giác vuông có cạnh huyền lớn nhất nên:
Vậy a=16
Câu 5:
Ta thấy nên
Nhìn vào biểu thức thấy ngay x=1;y=2
Câu 6: Khoảng cách từ A đến O chính là đường chéo của tam giác vuông OAB(với B trên Ox là -3 ý)
Kết quả là 5
Câu 7:
Xét suy ra x là số lẻ.
Đặt x=2k+1. Thay x=2k+1 vào có:
chia hết cho 2 mà y nguyên tố nên y=2. Thay y=2 vào suy ra x=3
1 : 18
2 : -11
3 : 0
4 : 16
5 : x=3;y=34
6 : 5
7 ; 3
Cho các số dương x,y thỏa 4x+5y=7 . Tìm GTNN của biểu thức \(B=5\left|x\right|-3\left|y\right|\)
a)Tìm x,biết 2l3x-1l+1=5
b) Tìm số tự nhiên y biết 3y+3y+2=810
c)Tính giá trị của biểu thức M=3x2-5y+1 tại ,x=-3,y=4
a/\(2\left|3x-1\right|+1=5\)
\(\Rightarrow2\left|3x-1\right|=4\)
\(\Rightarrow\left|3x-1\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}3x-1=2\\3x-1=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=3\\3x=-1\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x=1\)
Vậy x = 1
b/\(3^y+3^{y+2}=810\)
\(\Rightarrow3^y+3^y\cdot3^2=810\)
\(\Rightarrow3^y\left(1+3^2\right)=810\)
\(\Rightarrow3^y\cdot10=810\)
\(\Rightarrow3^y=81\)
\(\Rightarrow y=4\)
c/Thay x = -3, y = 4 vào M, ta có:
\(M=3\cdot\left(-3\right)^2-5\cdot4+1\)
\(=3\cdot9-20+1\)
\(=27-20+1\)
\(=8\)
a)Ta có:
\(2\left|3x-1\right|+1=5\)
\(\Rightarrow2\left|3x-1\right|=4\)
\(\Rightarrow\left|3x-1\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}3x-1=2\\3x-1=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=3\\3x=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b) Ta có:
\(3^y+3^{y+2}=810\)
\(\Rightarrow3^y\left(1+3^2\right)=810\)
\(\Rightarrow3^y.10=810\)
\(\Rightarrow3^y=81\)
\(\Rightarrow y=4\)
c) Thay \(x=-3;y=4\) ta được:
\(M=3\left(-3\right)^2-5.4+1=3.9-20+1=27-20+1=8\)
Tìm GTNN của
A = (5x + 1)6k + 2015 + | 5y + 1 | + | x - y | + | z - x| (k khác 0)
Nhờ các bn giải giúp mik với ạ