Những câu hỏi liên quan
ND
Xem chi tiết
DH
6 tháng 4 2017 lúc 10:40

Ta có :

\(\frac{1}{101}>\frac{1}{200}\)

\(\frac{1}{102}>\frac{1}{200}\)

\(\frac{1}{103}>\frac{1}{200}\)

\(.........\)

\(\frac{1}{200}=\frac{1}{200}\)

Cộng vế với vế ta được :

\(\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}\) (có 100 số hạng \(\frac{1}{200}\))\(=\frac{100}{200}=\frac{1}{2}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}>\frac{1}{2}\)

Bình luận (0)
VL
Xem chi tiết
YN
15 tháng 2 2023 lúc 22:53

Đặt \(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)

Ta có:

\(\dfrac{1}{101}>\dfrac{1}{200}\)

\(\dfrac{1}{102}>\dfrac{1}{200}\)

\(\dfrac{1}{103}>\dfrac{1}{200}\)

...

\(\dfrac{1}{199}>\dfrac{1}{200}\)

\(\Rightarrow A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)

\(=\dfrac{1}{200}.100\)

\(=\dfrac{1}{2}\)

Mà \(\dfrac{1}{2}< 1\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}< 1\).

Bình luận (0)
ND
Xem chi tiết
MV
26 tháng 4 2017 lúc 11:47

\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}\)

Ta thấy các phân số \(\frac{1}{101};\frac{1}{102};\frac{1}{103};...;\frac{1}{198};\frac{1}{199}\)đều lớn hơn \(\frac{1}{200}\)

\(\Rightarrow A>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+..+\frac{1}{200}+\frac{1}{200}\)(có 100 số hạng \(\frac{1}{200}\))

\(\Leftrightarrow A>\frac{100}{200}\)

\(\Leftrightarrow A>\frac{1}{2}\)

Bình luận (0)
ND
Xem chi tiết
TQ
Xem chi tiết
HM
9 tháng 3 2018 lúc 18:51

a) Ta có: \(\frac{2010}{2009}=1+\frac{1}{2009}\)(1)

            \(\frac{2011}{2010}=1+\frac{1}{2010}\)(2)

Từ (1) và (2)

    Mà: \(\frac{1}{2009}>\frac{1}{2010}\)

       \(\Rightarrow\frac{2010}{2009}>\frac{2011}{2010}\)

b) Ta có: 100 số hạng của dãy đều bé hơn 1/100

\(\Rightarrow\)\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}\cdot100\)

Hay \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< 1\)

Bình luận (0)
ND
Xem chi tiết
PN
Xem chi tiết
SM
14 tháng 2 2016 lúc 20:36

j mà  nhìu zu zậy làm bao giờ mới xong

Bình luận (0)
TP
14 tháng 2 2016 lúc 20:38

Ủng hộ mk đi các bạn
 

Bình luận (0)
TH
Xem chi tiết
H24
25 tháng 9 2016 lúc 21:19

\(101\cdot M=\frac{101^{103}+101}{101^{103}+1}=1+\frac{100}{101^{103}+1}\)

\(101\cdot N=\frac{101^{104}+101}{101^{104}+1}=1+\frac{100}{101^{104}+1}\)

mà 101^103+1<101^101+1         =>\(\frac{100}{101^{103}+1}>\frac{100}{101^{104}+1}\)

nên M>N

Bình luận (0)
MH
Xem chi tiết