tìm số tự nhiên n lớn hơn hoặc =1 sao cho A = 1!+2!+3!+........+n! là một số chính phương
Tìm số tự nhiên n lớn hơn hoặc bằng 1 sao cho tổng 1! + 2! + 3! +....+ n! là một số chính phương.
Gọi A(n) = 1 + 2
Với n = 1 => A1 = 1 = 1 = là một số chính phương
=>n = 1 (TM)
Với n = 2 => A2 = 1 = 1 + 2 =3 ko là một số chính phương
=>n = 2 (KTM)
Với n = 3 => A3 = =1 + 2 + 6 = 9 = là một số chính phương
=>n = 3 (TM)
Với n = 4 => A4 = 1 = 1 + 2 + 6 + 24 =33 không là mọt số chính phương
Với n
Vì 51.2.3.4.5 =1.3.4.10 có chữ số tận cùng là 5
Nên n có chữ số tận cùng là 3
Mà một số chính phương có chữ số tận cùng là:0;1;4;5;6;9
=>n = 5(KTM)
Vậy n = 1 hoặc n = 3 thì 1 là một số chính phương
Gọi A(n) = 1 + 2
Với n = 1 => A1 = 1 = 1 = là một số chính phương
=>n = 1 (TM)
Với n = 2 => A2 = 1 = 1 + 2 =3 ko là một số chính phương
=>n = 2 (KTM)
Với n = 3 => A3 = =1 + 2 + 6 = 9 = là một số chính phương
=>n = 3 (TM)
Với n = 4 => A4 = 1 = 1 + 2 + 6 + 24 =33 không là mọt số chính phương
Với n
Vì 51.2.3.4.5 =1.3.4.10 có chữ số tận cùng là 5
Nên n có chữ số tận cùng là 3
Mà một số chính phương có chữ số tận cùng là:0;1;4;5;6;9
=>n = 5(KTM)
Vậy n = 1 hoặc n = 3 thì 1 là một số chính phương
bài 1 : cho n là số tự nhiên lớn hơn 1 . Chứng minh rằng : n4+4n là hợp số
bài 2 : tìm số tự nhiên n sao cho 3n+55 là số chính phương
bài 3 : cho a+1 và 2a+1 ( n ( N ) đồng thời là hai số chính phương . Chứng minh rằng a chia hết cho 24
a, Cho số tự nhiên n lớn hơn 2012 và A= 1!+2!+3!+...+n! (với n!=123...n) . Hỏi A có là số chính phương không ? Tại sao ?
b, Tìm số dư khi chia 22008^2009 cho 31 ?
1)Có bao nhiêu ước là số chính phương của số
\(A=1^9.2^8.3^7.4^6.5^5.6^4.7^3.8^29^1\)
2)Tìm tất cả các số tự nhiên n sao cho các số n+50 va n-50 là số chính phương.
3)Tìm tất cả các số nguyên tố p sao cho 17p+1 là số chính phương.
4)a)Chứng minh rằng một số nguyên biểu diễn dưới dạng hai số chính phương khi và chỉ khi nó là một số lẻ hoặc chia hết cho 4.
b)Có bao nhiêu số tự nhiên từ 1 đến 2016 là hiệu của 2 số chính phương
Biết kí hiệu n!=1x2x3x4x5x6x..........................xn là tích n số tự nhiên khác 0 đầu tiên.
Có bao nhiêu số tự nhiên n lớn hơn 1 sao cho 1! + 2! +3! +.........+n! là số chính phương.
giúp giải khẩn cấp mng ơi:
1.cho stn n có 1995 ước số có 1 ước nguyên tố chẵn. chứng minh n là số chính phương, n chia hết 4
2. cho a là 1 hợp số, khi phân tích ra thừa số nguyên tố a chỉ chứa 2 thừa số nguyên tố khác nhau là p1 và p2. biết a^3 có tất cả 40 ước số. a^2 có bn ước số
3.tìm số tự nhiên n > hoặc = 1 sao cho tổng 1!+2!+3!+...+n! là một số chính phương
4. tìm số tự nhiên n có 2 c.s biết 2n+1 và 3n+1 đều là scp
5. chứng minh:
a)p và q là 2 số nguyên tố lớn hơn 3 thì p^2-q^2chia hết cho 24
b)Nếu a;a+k;a+2k (a và k thuộc N*) là các số nguyên tố lớn hơn 3 thì k chia hết 6
6.a)Một số nguyên tố chia 43 dư r (r là hợp số).TÌm r
b)1 số nguyên tố chia 30 dư r. Tìm r biết r ko là hợp số
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America
1,Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc
tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
2,a. Tìm n để n2+ 2006 là một số chính phương.
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2+ 2006 là số nguyên tố hay là hợp số.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
b. tìm a là số tự nhiên để 13a+a là số chính phương
c. tìm n là số tự nhiên sao cho 3n+4 là số chính phương
d. tìm n là số tự nhiên sao cho 2n+9 là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
1. Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì \(\left(p-1\right)\left(p+1\right)⋮24\)
2. Tìm số nguyên n sao cho : \(n^2-2\)chia hết cho n+3
3 . Tìm số tự nhiên n ( n > 0 ) sao cho tổng :
1! +2!+3! + ... +n! là một số chính phương