Những câu hỏi liên quan
PH
Xem chi tiết
EC
Xem chi tiết
TM
25 tháng 2 2021 lúc 21:42

https://hoc24.vn/cau-hoi/tim-xy-thuoc-z-thoa-man-x2-2xy-7x-y-2y2-10-0.216670050813

Bình luận (0)
NM
Xem chi tiết
KG
Xem chi tiết
NT
9 tháng 8 2023 lúc 12:47

\(x^2+2xy+7.\left(x+y\right)+2y^2+10=0\)

\(\Leftrightarrow\left(x+y^2\right)+7.\left(x+y\right)+\dfrac{49}{4}+y^2-\dfrac{9}{4}=0\)

\(\Leftrightarrow\left(x+y+\dfrac{7}{2}^2\right)=\dfrac{9}{4}-y^2\)

\(Do\left(x+y+\dfrac{7}{2}^2\right)\ge0\Rightarrow\dfrac{9}{4}-y^2\ge0\Rightarrow y^2\le\dfrac{9}{4}\)

Mà y nguyên \(\Rightarrow\left\{{}\begin{matrix}y^2\\\\y^2=1\end{matrix}\right.=0\)

Thay vào phương trình đầu: 

Với \(y=0\Rightarrow x^2+7x+10=0\Rightarrow\left\{{}\begin{matrix}x=-2\\\\\\x=-5\end{matrix}\right.\)

Với \(y=1\Rightarrow x^2+9x+19=0\Rightarrow\) không có x nguyên

Với \(y=-1\Rightarrow x^2+5x+5=0\Rightarrow\) không có x nguyên

Bình luận (0)
NL
Xem chi tiết
TT
Xem chi tiết
TI
Xem chi tiết
H24
Xem chi tiết
AH
30 tháng 7 2021 lúc 11:21

Lời giải:

$x^2-x^2y-y+8x+7=0$

$\Leftrightarrow x^2+8x+7=y(x^2+1)$

$\Leftrightarrow y=\frac{x^2+8x+7}{x^2+1}$

$\Leftrightarrow y=\frac{(x^2+1)+8x+6}{x^2+1}=1+\frac{8x+6}{x^2+1}$

Áp dụng bđt AM-GM ta có:
$x^2+\frac{1}{4}\geq |x|\geq x$
$\Rightarrow x^2+1\geq x+\frac{3}{4}=\frac{4x+3}{4}$

$\Rightarrow \frac{8x+6}{x^2+1}\leq \frac{2(4x+3)}{\frac{4x+3}{4}}=8$

$\Rightarrow y\leq 1+8=9$

Vậy $y_{\max}=9$

$x^2=\frac{1}{4}$; $x\geq 0\Rightarrow x=\frac{1}{2}$

 

Bình luận (12)
H24
30 tháng 7 2021 lúc 12:00

pt\(\Leftrightarrow x^2\left(1-y\right)+8x+7-y=0\) (1)

Ta có :\(\Delta\)(x)=\(-y^2+8y+9\)(do làm biếng  nên làm ra denta luôn)

Để tồn tại MAX y thì PT (1) có ngiệm nên \(\Delta\ge0\) \(\Leftrightarrow-y^2+8y+9\ge0\)

\(\Leftrightarrow-y^2-y+9y+9\ge0\Leftrightarrow-y\left(y+1\right)+9\left(y+1\right)\ge0\)

\(\Leftrightarrow\left(y+1\right)\left(9-y\right)\ge0\)

Giải BPT ta được : \(-1\le y\le9\)

\(\Rightarrow\) Max y =9. Thay y=9 vào (1)\(\Rightarrow x=\dfrac{1}{2}\)

Vậy Max y=9\(\Leftrightarrow x=\dfrac{1}{2}\)

 

 

Bình luận (0)
HA
Xem chi tiết