Những câu hỏi liên quan
LD
Xem chi tiết
TN
24 tháng 5 2016 lúc 9:10

x4 đồng dư với 0; 1(mod8) 

y4 đồng dư với 0; 1(mod8)

=>VT đồng dư với 0;1;2 (mod8)

z4 đồng dư với 0;1(mod 8) =>7z4 đồng dư với 0;7(mod8)

=>VP đồng dư với 5;4(mod8)

Bình luận (0)
TN
24 tháng 5 2016 lúc 9:11

x4 đồng dư với 0; 1(mod8) 

y4 đồng dư với 0; 1(mod8)

=>VT đồng dư với 0;1;2 (mod8)

z4 đồng dư với 0;1(mod 8) =>7z4 đồng dư với 0;7(mod8)

=>VP đồng dư với 5;4(mod8)

Từ đây suy ra điều phải cm

Bình luận (0)
NL
Xem chi tiết
NL
Xem chi tiết
LP
Xem chi tiết
TN
Xem chi tiết
TU
Xem chi tiết
VD
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NC
27 tháng 10 2020 lúc 8:40

Nếu x; y; z là các số nguyên dương mà x y z = 1 => x = y = z = 1

=> bất đẳng thức luôn xảy ra dấu bằng

Sửa đề 1 chút cho z; y; x là các số dương

Ta có: \(\frac{x^2}{y+1}+\frac{y+1}{4}\ge2\sqrt{\frac{x^2}{y+1}.\frac{y+1}{4}}=x\)

=> \(\frac{x^2}{y+1}\ge x-\frac{y+1}{4}\)

Tương tự: 

\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{z+1}\ge x+y+z-\frac{y+1}{4}-\frac{z+1}{4}-\frac{x+1}{4}\)

\(=\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.3\sqrt[3]{xyz}-\frac{3}{4}=\frac{3}{2}\)

Dấu "=" xảy ra <=> x = y = z = 1

Bình luận (0)
 Khách vãng lai đã xóa