Những câu hỏi liên quan
OA
Xem chi tiết
LD
18 tháng 4 2022 lúc 21:08

non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì

 

Bình luận (1)
LD
18 tháng 4 2022 lúc 21:08

đúng trẻ trâu

Bình luận (0)
H24
Xem chi tiết
HN
19 tháng 11 2023 lúc 14:55

loading...

Bình luận (0)
HK
Xem chi tiết
DH
Xem chi tiết
TD
28 tháng 5 2018 lúc 20:51

Ta có :

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)       (1)

Vì \(a,b,c\)là độ dài 3 cạnh của một tam giác nên ta có :

\(a^2< a.\left(b+c\right)\)

\(\Rightarrow a^2< ab+ac\)

Tương tự :

\(b^2< ab+bc\)

\(c^2< ca+bc\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)              (2)

Từ (1) và (2)

=> Đpcm

Bình luận (0)
PK
Xem chi tiết
CN
17 tháng 4 2016 lúc 13:31

bằng nhau trong trường hợp tam giác đều bạn tự làm nha còn bé hơn thì trước tiên viết 3 bất đẳng thức của tam giác sau đó cho 1 giả sử để chứng minh hoặc là biến đổi bất đẳng thức của tam giác giờ mình lười làm lắm hướng dẫn như vậy thôi

Bình luận (0)
LH
23 tháng 4 2016 lúc 21:28

Từ đề => a,b,c \(\ge\)0 . Ta lại có :\(ab+ac+bc\le a^2+b^2+c^2\) 

=> \(3\left(ab+ac+bc\right)\le\left(a+b+c\right)^2\) luôn đúng với mọi a,b,c \(\ge\) 0

=> dpcm

Dấu "=" xảy ra khi a=b=c hay khi  tam giác ABC đều 

Bình luận (0)
LH
23 tháng 4 2016 lúc 21:29

à bỏ cái = 0 đi nhé :v cạnh tam giác luôn lớn hơn 0 rồi

Bình luận (0)
TH
Xem chi tiết
VT
11 tháng 2 2020 lúc 22:36

Ta có:

\(\left(a+b\right)^2\ge0\)

\(\Rightarrow a^2+2ab+b^2\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\) (1).

\(\left(b+c\right)^2\ge0\)

\(\Rightarrow b^2+2bc+c^2\ge0\)

\(\Rightarrow b^2+c^2\ge2bc\) (2).

\(\left(c+a\right)^2\ge0\)

\(\Rightarrow c^2+2ca+a^2\ge0\)

\(\Rightarrow c^2+a^2\ge2ac\) (3).

Cộng theo vế (1), (2) và (3) ta được:

\(a^2+b^2+b^2+c^2+a^2+c^2\ge2ab+2bc+2ca\)

\(\Rightarrow2a^2+2b^2+2c^2\ge2.\left(ab+bc+ca\right)\)

\(\Rightarrow2.\left(a^2+b^2+c^2\right)\ge2.\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\) (*).

Vì a, b, c là độ dài ba cạnh của tam giác (gt).

\(\left\{{}\begin{matrix}a+b>c\\b+c>a\\c+a>b\end{matrix}\right.\) (theo bất đẳng thức trong tam giác).

=> \(\left\{{}\begin{matrix}ac+bc>c^2\left(4\right)\\ab+ac>a^2\left(5\right)\\bc+ab>b^2\left(6\right)\end{matrix}\right.\)

Cộng theo vế (4), (5) và (6) ta được:

\(ac+bc+ab+ac+bc+ab>a^2+b^2+c^2\)

\(\Rightarrow2ab+2bc+2ac>a^2+b^2+c^2\)

\(\Rightarrow2.\left(ab+bc+ca\right)>a^2+b^2+c^2\) (**).

Từ (*) và (**) => \(ab+bc+ca\le a^2+b^2+c^2< 2.\left(ab+bc+ca\right)\left(đpcm\right).\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
H24
11 tháng 2 2020 lúc 20:52

Theo BĐTBĐT tam giác ta có:
a<b+c
=>a2<ab+ac
b<c+a
=>b2<bc+ba
c<a+b
=>c2<ca+cb
Cộng vế với vế 3 BĐT trên ta được:
a2+b2+c2<2(ab+bc+ca)(1)

Ta có (a−b)2+(b−c)2+(c−a)2≥0 với mọi a,b,c là độ dài 3 cạnh của tam giác
<=>a2−2ab+b2+b2−2bc+c2+c2−2ca+a2≥0
<=>2(a2+b2+c2)≥2(ab+bc+ca)
<=>ab+bc+ca≤a2+b2+c2(2)
Dấu = xảy ra khi a=b=c<=> tam giác đó đều
(1),(2)=>đpcm

Bình luận (0)
 Khách vãng lai đã xóa
VD
Xem chi tiết
ND
Xem chi tiết
0V
26 tháng 6 2017 lúc 23:01

Mk còn thiếu vế trái nữa

 a2 + b2 + c\(\le\)2 ( ab + bc + ca ) 

Vì a ; b ; c là 3 cạnh của 1 tam giác nên theo bất đẳng  thức  tam giác:

Ta có: 

a\(\le\)b +c => a . a \(\le\)a.(b + c) => a2 \(\le\) ab + ac    ( 1 ) 

\(\le\) a + c => b . b \(\le\)b ( a + c ) => b\(\le\)ab + bc   ( 2) 

\(\le\) a + b => c . c \(\le\) c . ( a + b ) => c2 \(\le\) ac  + bc   ( 3 ) 

Cộng với các vế ( 1 ) ; ( 2 ) ; ( 3 ) được: 

a2+ b2 + c2 \(\le\) ab + ac + ab + bc + ac + bc 

Vậy a + b+ c\(\le\)2.( ab + bc + ca ) 

Bình luận (0)
0V
26 tháng 6 2017 lúc 22:50

a2 + b2 + c \(\ge\)    ab + bc + ca 

 <=> a2 + b2 + c2 - ab - bc  - ca \(\ge\) 0 

<=> 2a+ 2b+ 2c2 - 2ab - 2bc - 2ca \(\ge\)

<=> ( a2 - 2ab + b) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a\(\ge\)0 

<=> ( a - b )2 + ( b - c)2 + ( c - a)\(\ge\) 0 ( Luôn đúng)

Dấu "  = " xảy ra khi a = b = c 

Bình luận (0)
TT
Xem chi tiết