Những câu hỏi liên quan
H24
Xem chi tiết
IY
27 tháng 9 2019 lúc 20:42

\(\frac{1}{2014}-\frac{1}{2014.2013}-\frac{1}{2013.2012}-...-\frac{1}{3.2}-\frac{1}{2.1}.\)

\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}+\frac{1}{2013.2014}\right)+\frac{1}{2014}\)

\(=\frac{1}{2014}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(=\frac{1}{2014}-1+\frac{1}{2014}=\frac{1}{1007}-1=\frac{-1006}{1007}\)

....

Bình luận (0)
H24
Xem chi tiết
.
3 tháng 5 2020 lúc 16:05

\(A=\frac{1}{2016.2015}+\frac{1}{2015.2014}+\frac{1}{2014.2013}+...+\frac{1}{1.2}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)

\(=1-\frac{1}{2016}=\frac{2015}{2016}\)

Vậy \(A=\frac{2015}{2016}\).

Bình luận (0)
 Khách vãng lai đã xóa
LD
3 tháng 5 2020 lúc 16:08

Mình viết ngược lại cho dễ làm xD

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2014\cdot2015}+\frac{1}{2015\cdot2016}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(A=\frac{1}{1}-\frac{1}{2016}\)

\(A=\frac{2015}{2016}\)

Sai thì bỏ quá :3

Bình luận (0)
 Khách vãng lai đã xóa
ND
3 tháng 5 2020 lúc 16:09

= 2015/2016 nha bạn

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
LD
21 tháng 9 2017 lúc 21:43

Ta có : \(1-\frac{1}{2014.2013}-\frac{1}{2013.2012}-......-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2013.2014}\right)\)

\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(=1-\left(1-\frac{1}{2014}\right)\)

\(=1-1+\frac{1}{2014}\)

\(=\frac{1}{2014}\)

Bình luận (0)
PD
21 tháng 9 2017 lúc 21:41

\(a,1-\frac{1}{2014.2013}-\frac{1}{2013.2012}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\right)\)

\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(=1-\left(1-\frac{1}{2014}\right)\)

\(=1-1+\frac{1}{2014}\)

\(=\frac{1}{2014}\)

Bình luận (0)
MD
21 tháng 9 2017 lúc 21:53

1/2014

Bình luận (0)
DM
Xem chi tiết
LT
Xem chi tiết
N3
17 tháng 3 2020 lúc 14:09

A=1/2015-1/2015.2014-....-1/3.2-1/2.1

A=1/2015-[1/2015.2014+1/2014.2013+....+1/3.2+1/2.1]

A=1/2015-[1/1.2+1/2.3+....1/2014.2015]

A=1/2015-[1-1/2+1/2-1/3+...+1/2014-1/2015]

A=1/2015-[1-2015]

A=1/2015-1+1/2015

A=[1/2015+1/2015]-1

A=2/2015-1

A=-2013/2015

Bình luận (0)
 Khách vãng lai đã xóa
TY
Xem chi tiết
TD
Xem chi tiết
HG
27 tháng 7 2016 lúc 10:13

\(\frac{1}{2}-\frac{1}{2016.2015}-\frac{1}{2015.2014}-...-\frac{1}{3.2}\)

\(=\frac{1}{2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{2016}\right)\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{2016}\)

\(=\frac{1}{2016}\)

Bình luận (0)
NH
27 tháng 7 2016 lúc 10:16

\(\frac{1}{2}-\frac{1}{2016.2015}-\frac{1}{2015.2014}-...-\frac{1}{3.2}\)

\(=\frac{1}{2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{2016}\right)\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{2016}\)

\(=0+\frac{1}{2016}=\frac{1}{2016}\)

Bình luận (0)
TD
Xem chi tiết
HT
28 tháng 7 2016 lúc 10:12

Toán lớp 6

Bình luận (0)
NK
Xem chi tiết