Chứng minh:S=1/3+1/13+1/14+1/15+1/61+1/62+1/63+1/64+1/65+1/66<3/4
Chứng minh: A= 1/3+1/13+1/14+1/15+1/61+1/62+1/63+1/64+1/65+1/66<3/4
Vì \(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}
Chứng minh:S=\(\frac{1}{5}\)+\(\frac{1}{13}\)+\(\frac{1}{14}\)+\(\frac{1}{15}\)+\(\frac{1}{61}\)+\(\frac{1}{62}\)+\(\frac{1}{63}\)<\(\frac{1}{2}\)
chứng minh rằng s=1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/2
chứng minh 1/5+1/13+1/14+1/15+1/61+1/62+1/63 < 1/2
Ta có :
S = \(\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)
Chứng tỏ rằng : 1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/2
TA có:
1/12>1/13
1/12>1/14
1/12>1/15
=>1/12.3=1/4>1/13+1/14+1/15
1/60>1/61
1/60>1/62
1/60>1/63
=>1/60.3=1/20>1/61+1/62+1/63
=>1/5+1/4+1/20> 1/5+1/13+1/14+1/15+1/61+1/62+1/63
=>1/2> 1/5+1/13+1/14+1/15+1/61+1/62+1/63
CHO 1/5+1/13+1/14+1/15+1/61+1/62+1/63
cHỨNG minh 3/7<S<1/2
Chứng minh S = 1/5 +1/13+ /14+1/15+1/61+1/62+1/63 < 1/2
Ta có:
\(\frac{1}{5}=\frac{1}{5}\)
\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}
Ta có: \(S=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)
chứng minh rằng: S=1/5+1/13+1`/14+1/15+1/61+1/62+1/63<1/2
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}
Ta có:
S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)<1/5+1/12.3+1/60.3
=>S<1/5+1/4+1/20=10/20
Hay S<1/2
Chứng minh
a=1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/2
Ta có: \(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\)
\(A=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{62}+\frac{1}{62}+\frac{1}{63}\right)\)
\(A=\frac{1}{5}+\frac{1}{15}.3+\frac{1}{63}.3\)
\(A=\frac{1}{5}+\frac{1}{5}+\frac{1}{21}\)
\(A=\frac{47}{105}\)
Mà: \(\frac{47}{105}< \frac{47}{94}=\frac{1}{2}\)
Nên \(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{2}\)