Những câu hỏi liên quan
BA
Xem chi tiết
NQ
27 tháng 11 2014 lúc 18:26

1;2;4;5;7;8;................

Bình luận (0)
DK
31 tháng 1 2020 lúc 21:17

goi ucln (4n+3,2n+3) la d(d thuoc N*) 

<=>4n+3 chia het cho d,2n+3 chia het cho d

<=>2.(2n+3)-4n+3

<=>3 chia het cho d <=>d thuoc tap hop {1;3}

do 4n va 2n chan =>2n+3 va 4n+3 ko chia het cho3

=>d=1

<=>n thuoc tap hop 1,2

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
H24

\(\text{Giả sử 4n+34n+3 và 2n+32n+3 cùng chia hết cho số nguyên tố dd thì:}\)

\(\text{2(2n+3)−(4n+3)⋮d→3⋮d→d=3}\)

\(\text{Để (2n+3,4n+3)=1(2n+3,4n+3)=1 thì d≠3d≠3. Ta có:}\)

\(\text{4n+34n+3 không chia hết cho 3 nếu 4n không chia hết cho 3 hay n không chia hết cho 3.}\)

\(\text{Kết luận: Với nn không chia hết cho 3 thì 4n+3 và 2n+3 là hai số nguyên tố cùng nhau.}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
12 tháng 1 2020 lúc 21:03

cảm ơn bạn

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
VK
Xem chi tiết
PB
Xem chi tiết
CT
19 tháng 7 2017 lúc 16:01

Bình luận (0)
TU
Xem chi tiết
NH
9 tháng 11 2023 lúc 23:05

a,tim n \(\in\) N; 4n + 3 và 2n + 3 nguyên tố cùng nhau

    Gọi ước chung lớn nhất của 4n + 3 và 2n + 3 là d ta có:

             \(\left\{{}\begin{matrix}4n+3⋮d\\2n+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4n+3⋮d\\\left(2n+3\right).2⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}4n+3⋮d\\4n+6⋮d\end{matrix}\right.\)

     ⇒  4n + 6 - (4n + 3) ⋮ d  ⇒ 4n + 6 - 4n - 3 ⋮ d ⇒ 3 ⋮ d

     ⇒ d = 1; 3

Để 4n + 3 và 2n + 3 là hai số nguyên tố cùng nhau thì 

        2n + 3 không chia hết cho 3

        2n không chia hết cho 3

        n = 3k + 1; hoặc n = 3k + 2 (k \(\in\) N)

       

              

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 3 2017 lúc 13:33

a, Gọi d = ƯCLN(7n+13;2n+4).

=>2(7n+13) ⋮ d; 7(2n+4)d

=> [(14n+28) – (14n+6)]d

=> 2d => d = {1;2}

Nếu d = 2 thì (7n+3)2 => [7(n+1)+6]2 => 7(n+1)2

Mà ƯCLN(7,2) = 1 nên (n+1)2 => n = 2k–1

Vậy để 7n+13 và 2n+4 nguyên tố cùng nhau thì  2k–1

b, Gọi d =  ƯCLN(4n+3;2n+3)

=> (4n+3)d; 2(2n+3)d

=> [(4n+6) – (4n+3)]d

=> 3d => d = {1;3}

Nếu d = 3 thì (4n+3) ⋮ 3 => [3(n+1)+n] ⋮ 3 => n ⋮ 3 => n = 3k

Vậy để 4n+3 và 2n+3 nguyên tố cùng nhau thì n ≠ 3k

Bình luận (0)
LN
Xem chi tiết
NT
29 tháng 1 2020 lúc 20:38

a)+)Gọi d là số nguyên tố và là ƯCLN(4n+3,2n+3)

=>4n+3\(⋮\)d;2n+3\(⋮\)d

+)4n+3\(⋮\)d(1)

+)2n+3\(⋮\)d

=>2.(2n+3)\(⋮\)d

=>4n+6\(⋮\)d(2)

Từ(1) và (2) 

=>(4n+6)-(4n+3)\(⋮\)d

=>4n+6-4n-3\(⋮\)d

=>3\(⋮\)d

Mà d nguyên tố

=>d=3

=>4n+3\(⋮\)d

=>4n+3\(⋮\)3

=>4n+3=3k(k\(\in\)N)

=>4n    =3k+3

   4n       =3.(k+1)

   n        =3.(k+1):4

Mà 3 ko chia hết cho 4

=>k+1\(⋮\)4

=>k+1=4z(z\(\in\)N)

=>n    =3.4z:4

=>n     =3z

=>n   \(\ne\)3z thì 4n+3 và 2n+3 nguyên tố cùng nhau

b)Làm tương tự phần a nha

Chúc bn học tốt

Bình luận (0)
 Khách vãng lai đã xóa
VL
Xem chi tiết