cho tỉ lệ thức : \(\frac{x}{y}=\frac{3}{4}\). tính x , y biết : 2x+y=10
cho tỉ lệ thức \(\frac{x}{y}\)=\(\frac{3}{4}\)
a,tính y cho biết x=12
b, tính x,y biết 2x+y=10
Thay x=12 vào x/y=3/4 ta có:
12/y=3/4
=>12.4=3y
=>y=48:3=16
Vậy y=16
b)Ta có:x/y=3/4=>x/3=y/4
Đặt x/3=y/4=k=>x=3k,y=4k
Ta có:2x+y=10
hay 2.3k+4k=10
=>6k+4k=10
=>k(6+4)=10
=>10k=10=>k=1
Do đó:x/3=1=>x=1.3=3
y/4=1=>y=1.4=4
Vậy x=3;y=4
Đáp án của mình
Câu a, x= 16
Câu b, x=3,y=4
a) \(\frac{12}{y}=\frac{3}{4}\)
\(\Rightarrow y=\frac{12.4}{3}\)
\(\Rightarrow y=16\)
vậy khi \(x=12\)thì \(y=16\)
cho tỉ lệ thức\(\frac{2x+3}{y+12}=\frac{2x+1}{y+4}\)và\(x,y\ne0\)tính\(\frac{y^2-x^2}{y^2+17x^2}\)
\(\frac{2x+3}{y+12}=\frac{2x+1}{y+4}\)
<=> ( 2x + 3 )( y + 4 ) = ( y + 12 )( 2x + 1 )
<=> 2xy + 8x + 3y + 12 = 2xy + y + 24x + 12
<=> 2xy + 8x + 3y + 12 - 2xy - y - 24x - 12 = 0
<=> 2y - 16x = 0
<=> 2y = 16x
<=> y = 8x
Thế y = 8x ta được :
\(\frac{y^2-x^2}{y^2+17x^2}=\frac{\left(8x\right)^2-x^2}{\left(8x\right)^2+17x^2}=\frac{64x^2-x^2}{64x^2+17x^2}=\frac{63x^2}{81x^2}=\frac{7}{9}\)
Bài làm:
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{2x+3}{y+12}=\frac{2x+1}{y+4}=\frac{2x+3-2x-1}{y+12-y-4}=\frac{1}{4}\)
=> \(\hept{\begin{cases}\frac{2x+3}{y+12}=\frac{1}{4}\\\frac{2x+1}{y+4}=\frac{1}{4}\end{cases}}\Rightarrow\hept{\begin{cases}8x+12=y+12\\8x+4=y+4\end{cases}}\Rightarrow8x=y\)
Thay vào: \(\frac{y^2-x^2}{y^2+17x^2}=\frac{\left(8x\right)^2-x^2}{\left(8x^2\right)+17x^2}=\frac{63x^2}{81x^2}=\frac{7}{9}\)
Cho x, y tỉ lệ nghịch với 2; 3. Cho y; z tỉ lệ thuận với 4; 3.
Tính giá trị biểu thức \(A=\frac{x^2-y^2-z^2}{2x^2-3y^2-z^2}\)
x, y tỉ lệ nghịch vs 2, 3
=> 2.x=3.y=> \(x=\frac{3}{2}y\)
y, z tỉ lệ thuận với 4, 3
=> \(\frac{y}{4}=\frac{z}{3}\Rightarrow z=\frac{3}{4}y\)
Em thay vào tính nhé
cho tỉ lệ thức \(\frac{x}{y}=\frac{5}{3}\)tìm x,y biết\(2x+y=-26\),\(x^2-y^2=4\),\(x\times y=60\)
\(\frac{x}{y}=\frac{5}{3}\) <=> 3x=5y <=> \(\frac{x}{5}=\frac{y}{3}\)
+) Theo tính chất DTSBN ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{2x}{2.5}=\frac{y}{3}=\frac{2x+y}{10+3}=\frac{-26}{13}=-2\)
x/5=-2=>x=(-2).5=-10
y=3=-2=>y=(-2).3=-6
+) Theo tính chất DTSBN ta có :
\(\frac{x}{5}=\frac{y}{3}\Leftrightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{5^2-3^2}=\frac{4}{16}=\frac{1}{4}\)
x/5=1/4=>x=1/4.5=5/4
y/3=1/4=>y=1/4.3=3/4
+) Đặt k ta có :
\(\frac{x}{5}=k\Rightarrow x=5k\)
\(\frac{y}{3}=k\Rightarrow y=3k\)
x.y=60 <=> 5k.3k = 60
15k2=60
k2=60:15
k2=4
=> k=2
x=5k=2.5=10
y=3k=2.3=6
Xét x^2 - y^2 = 4
Để biểu thức trên đúng thì x^2 = 4 và y^2 = 0
Vậy x có thể có 2 giá trị là -2 và 2
Lại có x . y = 60
Mà số y = 0 nên x . y chắc chắn cũng bằng 0
Vậy không tồn tại 2 số x và y thỏa mãn các điều kiện trên
Cho tỉ lệ thức:
\(\frac{2x-3y}{x+2y}=\frac{2}{3}\), tính giá trị của tỉ lệ thức \(\frac{y}{x}\)
Ta có:\(\orbr{\begin{cases}2x-3y=3\\x+2y=2\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}4x-6y=6\\3x+6y=6\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}7x=12\\3x+6y=6\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{12}{7}\\3x+6y=6\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{12}{7}\\y=\frac{1}{7}\end{cases}}\)
Vậy tỉ lệ thức \(\frac{y}{x}=\frac{1}{12}\)
Cho đại lượng y và đại lượng x tỉ lệ nghịch với nhau theo hệ số tỉ lệ a. Biết x=-4 thì y=3.
1. Tìm hệ số tỉ lệ a và viết công thức liên hệ giữa x và y.
2. Tính giá trị của x biết y=-6; tính giá trị của y biết x=\(\frac{3}{4}\)
giúp tui với nhé!
y và x là hai đại lượng tỉ lệ nghịch => y = a/x ( a là hằng số )
1. Khi x = -4 thì y = 3 => 3 = a/(-4) => a = -12
Công thức liên hệ : y = -12/x hoặc xy = -12
2. Khi y = -6 => x = (-12)/(-6) = 2
Khi x = 3/4 => y = (-12)/(3/4) = -16
1/ Cho tỉ lệ thức \(\frac{x}{2}\)=\(\frac{y}{5}\). Biết rằng xy=90. Tìm x và y
2/ Cho tỉ lệ thức \(\frac{3x-y}{x+y}\)= \(\frac{3}{4}\). Tìm \(\frac{x}{y}\)
1. Theo t/c của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x.y}{2.5}=\frac{90}{10}=9\)
\(\frac{x}{2}=9\Rightarrow x=9.2=18\)
\(\frac{y}{5}=9\Rightarrow y=9.5=45\)
Vậy x = 18 ; y = 45
Theo đề bài, ta có:
\(\frac{x}{2}=\frac{y}{5}\) và xy=90
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{5}=\frac{x.y}{2.5}=\frac{90}{10}=9\)
\(\frac{x}{2}=9.2=18\)\(\frac{y}{5}=9.5=45\)Vậy x=18 và y=45
^...^ ^_^
1/ Đặt x/2 = y/5 = k
=> x = 2k; y = 5k
Ta có: xy = 90
=> 2k . 5k = 90
=> 10 . k^2 = 90
=> k^2 = 90 : 10 = 9
=> k = 3 hoặc k = -3
Nếu k = 3 => x = 2 . 3 = 6; y = 5 . 3 = 15
Nếu k = -3 => x = 2 . (-3) = -6; y = 5 . (-3) = -15
Vậy x = {-6; 6} và y = {-15; 15}.
Tìm số hữu tỉ x trong tỉ lệ thức sau
a) 0,4:x=x:0,9 b)\(13\frac{1}{3}:1\frac{1}{3}=26:\left(2x-1\right)\)
c)\(0,2:1\frac{1}{5}=\frac{2}{3}:\left(6x+7\right)\) d) \(\frac{37-x}{x+13}=\frac{3}{7}\)
Cho tỉ lệ thức \(\frac{3x-y}{x+y}=\frac{3}{4}\). Tính giá trị của tỉ số \(\frac{X}{y}\)
Cho x và y là hai đại lượng tỉ lệ nghịch. Biết x = 6 thì y = -4
a) Tìm hệ số tỉ lệ của x và y ?
b) Tìm công thức liên hệ giữa x và y ?
c) Cho biết y = \(2\frac{2}{5}\); y = \(\frac{-3}{4}\)tính giá trị tương ứng của x ?
a) Vì x và y là 2 đại lượng tỉ lệ nghịch. Hệ số tỉ lệ x và y : \(6.\left(-4\right)=-24\)
b) Vì hệ số tỉ lệ là \(-24\) nên công thức liên hệ x và y là \(y=\frac{-24}{x}\) hay \(xy=24\)
c) \(y=2\frac{2}{5}=\frac{12}{5}=\frac{-24}{x}\Leftrightarrow12x=\left(-24\right).5=-120\Leftrightarrow x=-10\)
\(y=\frac{-3}{4}=\frac{-24}{x}\Leftrightarrow\left(-24\right).4=-96=\left(-3\right)x\Leftrightarrow x=\left(-96\right)\div\left(-3\right)=32\)