CMR:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)chia hết cho 12
Cho a ; b ; c ; d thuộc N . CMR : A = ( a - b ).( a - c ).( a - d ).( b - c ).( b - d ).( c - d ) chia hết cho 12
+) Chia 4 số a; b; c;d cho 3 . Số dư có thể là 0; 1; 2
theo nguyên lí Dirichle: có ít nhất 2 trong 4 số a; b; c; d có cùng số dư khi chia cho 3
=> Hiệu hai số đó chia hết cho 3
=> Trong số tất cả các hiệu a-b; a - c; a - d; b - c; b - c; c - d có hiệu chia hết cho 3
=> tích A chia hết cho 3 (*)
+) Xét 3 số a; b; c . chia 3 số đó cho 2 . Số dư có thể là 0;1
Theo nguyên lí Dirichle: có ít nhất 2 trong số a; b; c có cùng số dư khi chia cho 2
=> Hiệu hai số đó chia hết cho 2
=> Trong hiệu a - b; a - c; b - c có hiệu chia hết cho 2
=> Tích (a - b)(a - c)(b - c) chia hết cho 2
+) Xét 3 số b; c; d . tương tự như trên => Có ít nhất 2 trong 3 số b; c;d có cùng số dư khi chia cho 2
- Nếu d cùng số dư với b hoặc c => (b - d) hoặc (c - d) chia hết cho 2 => tích (a - d)(b - d)(c - d) chia hết cho 2
- Nếu d không cùng số dư với cả b và c => b và c có cùng số dư
* Nếu a cùng số dư với b; c => a - b; b - c chia hết cho 2 => Tích (a - b)(a - c)(b - c) chia hết cho 2 chia hết cho 4
* Nếu a không cùng số dư với b và c => a và d cùng số dư => a - d chia hết cho 2 => tích (a - d)(b - d)(c - d) chia hết cho 2
=> Tích A luôn chia hết cho 4 (**)
Từ (*)(**) =>A luôn chia hết cho 3.4 = 12
lồn mẹ mi ạ làm sai to
Cho a , b , c thuộc Z . CMR : ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho 12
- Cho a,b,c,d là các số nguyên bất kỳ. CMR: (a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12
tham khảo đỡ đi:
https://olm.vn/hoi-dap/detail/20065386691.html
Cho a, b , c, d thuộc Z . CMR
( a - b ) . ( a - c ) . ( a - d ) .( b - c ) . ( b - d ) . ( c - d ) chia hết cho 12
Cho a, b , c, d thuộc Z . CMR
( a - b ) . ( a - c ) . ( a - d ) .( b - c ) . ( b - d ) . ( c - d ) chia hết cho 12
Bạn tham khảo bài của Đinh Tuấn Việt ở Câu hỏi của Ha Le - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
Trong 4 số a,b,c,d có ít nhất 2 số cùng số dư khi chia cho 3.
Trong 4 số a,b,c,d : nếu có 2 số cùng số dư khi chia cho 4 thì hiệu 2 số đó sẽ chia hết cho 4.
Nếu không thì 4 số dư theo thứ tự 0,1,2,3 ⇔ trong 4 số a,b,c,d có 2 số chẵn, 2 số lẽ.
Hiệu của 2 số chẵn và 2 số lẽ trong 4 số đó chia hết cho 2
⇒ Tích trên chia hết cho 3 và 4.
Mà ƯCLN(3; 4) = 1 nên (a-b).(a-c).(b-c).(b-d).(c-d) chia hết cho (3 . 4) = 12.
a đù tau cũng làm được
Cho a,b,c,d thuộc Z. CMR (a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12
\(-\) Chia 4 số a , b , c , d cho 3 có thể xảy ra 3 trường hợp về số dư là dư 0 , dư 1 , dư 2 .Do đó có ít nhất có 2 số có cùng số dư khi chia cho 3 .Do đó 1 hiệu trong tích trên chia hết cho 3 .Suy ra tích đó chia hết cho 3
\(-\)Chia 4 số a , b , c , d cho 4 , ta xét 4 số a , b , c , d chia hết cho 2 .Có thể xảy ra 2 trường hợp về số dư là dư 0 , dư 1 .Do đó tồn tại ít nhất 2 cặp số có cùng số dư khi chia cho 2 .Nên các hiệu trên ít nhất có 2 hiệu chia hết cho 2 .Do đó tích trên chia hết cho 4
Mà ƯCLN ( 3 , 4 ) = 1
Suy ra tích trên chia hết cho 12
Cho a , b , c , d thuộc Z CMR ;
( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho 12
cho 4 stn a,b,c,d ( a>=b>=c>=d) .cmr số A= (a-b)(b-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12
CMR với mọi số nguyên a,b,c,d thì (a-b).(a-c).(a-d).(b-c).(b-d).(c-d) chia hết cho 12
Trong 4 số a,b,c,d có ít nhất 2 số cùng số dư khi chia cho 3.
Trong 4 số a,b,c,d : nếu có 2 số cùng số dư khi chia cho 4 thì hiệu 2 số đó sẽ chia hết cho 4.Nếu ko thì 4 số dư theo thứ tự 0,1,2,3 $$ trong 4 số a,b,c,d có 2 số chẵn, 2 số lẽ.Hiệu của 2 số chẵ và 2 số lẽ trong 4 số đó chia hết cho 2
=>TÍch trên chia hết cho 3,4 => chia hết cho 12
đơn giản
thay a=0 b=1 c=2 d=3 là biết ngay