so sanh \(y=\frac{2012^{2012}}{2013^{2013}}\) va \(z=\frac{2012^{2012}+2012}{2013^{2013}+2013}\)
So sanh P va Q
P=\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)
Q=\(\frac{2010+2011+2012}{2011+2012+2013}\)
\(\frac{2011+2012}{2012+2013}va\frac{2011}{2012}+\frac{2012}{2013}\)
so sanh va ghi loi giai day du nha
đặt \(A=\frac{2011+2012}{2012+2013};B=\frac{2011}{2012}+\frac{2012}{2013}\)
ta có:\(A=\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)
\(\frac{2011}{2012+2013}<\frac{2011}{2012};\frac{2012}{2012+2013}<\frac{2012}{2013}\)
=>A<B
\(\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)
rồi bây giờ thấy ngay đáp án r tự làm đi
Ta có: \(\frac{2011}{2012}>\frac{2011}{2013+2012};\frac{2012}{2013}>\frac{2012}{2012+2013}\)
=>\(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}=\frac{2011+2012}{2012+2013}\)
Vậy\(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011+2012}{2012+2013}\)
k cho mk nha
A=2011+2012/2012+2013 va B=2011/2012+2012/2013
so sanh
Ta có: \(A=\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)
Mà: \(\frac{2011}{2012+2013}< \frac{2011}{2012};\frac{2012}{2012+2013}< \frac{2012}{2013}\)
\(\Rightarrow A=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}< \frac{2011}{2012}+\frac{2012}{2013}=B\)
Hay: A < B
dễ quá bạn ơi
chỉ cần lấy 2011(A)>2011/2012+2012/2013
vậy A>B
A=2012/2013+2013/2014, B=2012+2013/2013+2014. So sanh A va B
Ta có: 1- 2012/2013=1/2013
1- 2013/2014=1/2014
Mà 1/2013>1/2014
vậy 2012/2013<2013/2014
Không tính cụ thể , hãy sắp xếp các biểu thức sau theo thứ tự giảm dần :
\(\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
dễ ợt nhưng éo biết làm thông cảm nha
ban Dang Ha Trang an noi gi ki vay
\(\)M=\(\frac{2012^{2012}}{2013^{2013}}\)và N=\(\frac{2012^{2012}+2012}{2013^{2013}+2013}\). So sánh M và N
\(M=\frac{2012}{2013}.\frac{2012^{2011}}{2013^{2011}}\)
\(N=\frac{2012}{2013}.\frac{2012^{2011}+1}{2013^{2011}+1}\)
Bạn tự so sánh tiếp nhé!
Đặt 20122012 = x ; 20132013 = y
Giả sử M < N
Ta có : \(\frac{x}{y}< \frac{x+2012}{y+2013}\)
\(\Leftrightarrow x\left(y+2013\right)< y\left(x+2012\right)\)
\(\Leftrightarrow xy+2013x< xy+2012y\)
\(\Leftrightarrow2013x< 2012y\)
\(\Leftrightarrow2013.2012^{2012}< 2012.2013^{2013}\)
\(\Leftrightarrow2012^{2011}< 2013^{2012}\)( Đúng )
=> Điều giả sử trên là đúng
=> M < N
So sánh \(\left(\frac{2012^{2012}}{2013^{2012}}+1\right)^{2013}\) và \(\left(\frac{2012^{2013}}{2013^{2013}}+1\right)^{2012}\)
Ta có \(\frac{2012^{2013}}{2013^{2013}}=\frac{2012^{2012}}{2013^{2012}}.\frac{2012}{2013}\)
Vì \(\frac{2012}{2013}< 1\)nên\(\frac{2012^{2012}}{2013^{2012}}.\frac{2012}{2013}< \frac{2012^{2012}}{2013^{2012}}.1=\frac{2012^{2012}}{2013^{2012}}\)
hay \(\frac{2012^{2013}}{2013^{2013}}< \frac{2012^{2012}}{2013^{2012}}\)
\(\Rightarrow\frac{2012^{2013}}{2013^{2013}}+1< \frac{2012^{2012}}{2013^{2012}}+1\)
\(\Rightarrow\left(\frac{2012^{2013}}{2013^{2013}}+1\right)^{2012}< \left(\frac{2012^{2012}}{2013^{2012}}+1\right)^{2013}\)
so sanh p va q biet
p=2010/2011+2011/2012+2012/2013
q=2010+2011+2012/2011+2012+2013
ta có:Q=2010+2011+2012/2011+2012+2013=2010/2011+2012+2013+2011/2011+2012+2013+2012/2011+2012+2013
=> P>2010/2011+2012+2013
P>2011/2011+2012+2013
P>2012/2011+2012+2013
=>P>Q
So sánh phân thức A=\(\frac{2013^2-2012^2}{2013^2+2012^2}\) với B=\(\frac{2013-2012}{2013+2012}\)