Những câu hỏi liên quan
H24
Xem chi tiết
AH
25 tháng 1 2024 lúc 17:12

Lời giải:

PT $\Leftrightarrow x^2-4xy+(5y^2+2y-3)=0$

Dấu "=" tồn tại nghĩa là pt luôn có nghiệm.

$\Leftrightarrow \Delta'=(2y)^2-(5y^2+2y-3)\geq 0$

$\Leftrightarrow -y^2-2y+3\geq 0$

$\Leftrihgtarrow y^2+2y-3\leq 0$

$\Leftrightarrow (y-1)(y+3)\leq 0$

$\Leftrightarrow -3\leq y\leq 1$

$\Rightarrow y_{\max}=1$

Bình luận (0)
TN
Xem chi tiết
AH
14 tháng 1 2024 lúc 0:40

Lời giải:
$x^2+5y^2+4xy=2023$
$\Leftrightarrow (x^2+4y^2+4xy)+y^2=2023$

$\Leftrightarrow (x+2y)^2+y^2=2023$

Ta biết rằng 1 scp khi chia cho $4$ dư $0$ hoặc $1$

Tức là $(x+2y)^2\equiv 0,1\pmod 4$ và $y^2\equiv 0,1\pmod 4$

$\Rightarrow (x+2y)^2+y^2\equiv 0,1,2\pmod 4$

Mà $2023\equiv 3\pmod 4$

Do đó không tồn tại $x,y$ nguyên để $(x+2y)^2+y^2=2023$

Bình luận (0)
TT
Xem chi tiết
NQ
13 tháng 1 2018 lúc 22:25

pt <=> 9x^2+3y^2+12xy+12x+6y+15 = 0

<=> [(9x^2+12xy+4y^2)+2.(3x+2y).2+4] - (y^2+2y+1) + 12 = 0

<=> [(3x+2y)^2+2.(3x+2y).2+4] -(y+1)^2 = -12

<=> (3x+2y+2)^2 - (y+1)^2 = -12

<=> (3x+2y+2+y+1).(3x+2y+2-y-1) = -12

<=> (3x+3y+3).(3x+y+1) = -12

<=> (x+y+1).(3x+y+1) = -4

Đến đó bạn dùng quan hệ ước bội cho các số nguyên mà giải nha !

Tk mk nha

Bình luận (0)
DL
Xem chi tiết
TK
1 tháng 2 2024 lúc 18:56

\(x^2+5y^2+2y+4xy-3=0\)
\(\Leftrightarrow\)\((x^2+4xy+4y^2)+(y^2+2y+1)=4\)
\(\Leftrightarrow\)\((x+2y)^2+(y+1)^2=4\)
\(\Leftrightarrow\)\((x+2y)^2=4-(y+1)^2\)
\(\Leftrightarrow\)\((x+2y)^2=(2-y-1)(2+y+1)\)
\(\Leftrightarrow\)\((x+2y)^2=(1-y)(3+y)\)
\(Vì \) \((x+2y)^2\geq0\)
\(\Rightarrow\)\((1-y)(3+y)\geq0\)
\(\Rightarrow\)\(\left[\begin{array}{} \begin{cases} 1-y\geq0\\ 3+y\geq0 \end{cases}\\ \begin{cases} 1-y\leq0\\ 3+y\leq0 \end{cases} \end{array} \right.\)
\(\Rightarrow\)\(\left[\begin{array}{} \begin{cases} y\leq1\\ y\geq-3 \end{cases}\\ \begin{cases} y\geq1\text{(Vô lí)}\\ y\leq-3\text{(Vô lí)} \end{cases} \end{array} \right.\)
\(\Rightarrow\)\(-3\leq y\leq1\)
\(\text{Mà y là số nhỏ nhất}\)
\(\Rightarrow\)\(y=-3\)
\(\Rightarrow\)\(x+2.(-3)=0\text{ (Vì }(x+2y)^2\geq0)\)
\(\Rightarrow\)\(x=6\)
\(\text{Vậy cặp số (x,y) thỏa mãn yêu cầu bài toán là: (6;-3)}\)
Nếu mình đúng cho mình xin 1 like nha

Bình luận (0)
PK
Xem chi tiết
KJ
Xem chi tiết
CM
18 tháng 8 2019 lúc 11:12

\(4x^2+4y-4xy+5y^2+1=0\)

\(\Leftrightarrow\left(2x-y\right)^2+\left(2y+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{4}\\y=-\frac{1}{2}\end{cases}}\)

Bình luận (0)
MY
Xem chi tiết
NL
26 tháng 10 2017 lúc 21:50

x^2 +5y^2 -4xy +2x +4 =0

x^2 +4y^2 -4xy +y^2 +4y+4 +2x -4y =0

(x -2y)^2 +2(x-2y)+(y+2)^2 =0

(x-2y+1)^2 +(y+2)^2 =1

do x,y nguyên nên x-2y+1; y+2 nguyên 

mà (x-2y+1)^2 ;(y+2)^2 lơn hơn hoặc bằng 0 với mọi x,y

nên ta có 2TH

TH1: (x-2y+1)^2 =1 ;(y+2)^2 =0

TH2: (x-2y+1)^2 =0 ;(y+2)^2 =1

bạn tự giải doạn cuối nhé

k cho mình nhé

Bình luận (0)
BM
Xem chi tiết
PD
20 tháng 9 2019 lúc 18:46

\(x^2-4xy+4y^2+y^2+2xy+1-4\)

\(\left(x-2y\right)^2+\left(y+1\right)^2-4\)   > -4

Dấu = xảy ra khi \(\hept{\begin{cases}x-2y=0\\y+1=0\end{cases}< =>\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)

Bình luận (0)
DP
Xem chi tiết
GL
5 tháng 3 2020 lúc 12:44

a, x2+5y2+2y-4xy-3=0

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Nếu \(y< -3\Rightarrow y+1< -2\Rightarrow\left(y+1\right)^2>4\Rightarrow VT>VP\)(vô lí)

\(\Rightarrow y\ge-3\Rightarrow y_{min}=-3\)

lúc đó \(\left(x+6\right)^2+4=4\Rightarrow x=-6\)

Vậy.................

Bình luận (0)
 Khách vãng lai đã xóa
TT
5 tháng 3 2020 lúc 12:46

a) \(x^2+5y^2+2y-4xy-3=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Ta thấy : \(4=0+4\) là tổng hai số chính phương

Thử các giá trị \(\orbr{\begin{cases}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{cases}}\)

Ta thấy : \(y=-3\) đạt giá trị nhỏ nhất.

Khi đó : \(x^2+5.\left(-3\right)^2+2\left(-3\right)-4x\left(-3\right)-3=0\)

\(\Leftrightarrow x=-6\)

Vậy : \(\left(x,y\right)=\left(-6,-3\right)\) với y nhỏ nhất thỏa mãn đề.

P/s : Không chắc lắm ....

Bình luận (0)
 Khách vãng lai đã xóa
GL
5 tháng 3 2020 lúc 12:48

b, Ta có \(\hept{\begin{cases}m^2+2⋮n\\n^2+2⋮m\end{cases}}\)

\(\Rightarrow\left(m^2+2\right)\left(n^2+2\right)⋮mn\)

\(\Rightarrow m^2n^2+2m^2+2n^2+4⋮mn\)

\(\Rightarrow m^2+n^2+2⋮mn\)(1)

Vì m,n lẻ nên \(\hept{\begin{cases}m^2\equiv1\left(mod4\right)\\n^2\equiv1\left(mod4\right)\end{cases}}\)

\(\Rightarrow m^2+n^2+2⋮4\)(2)

Từ (1) và (2) suy ra \(m^2+n^2+2⋮4mn\)

Bình luận (0)
 Khách vãng lai đã xóa