cho S=1/16+1/36+1/64+...+1/(2n)2 CMR:S<1/4
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho S=1/16 + 1/36 + 1/64 + ..... + 1/(2n)^2 . hãy chứng tỏ rằng S nhỏ hơn 1/4
C/m C=1/16+1/36+1/64+...+1/(2n)×(2n)<1/4
S=1/4+1/16+1/36+1/64+..............+1/567 CTR S<1/2
S = 1/4 + 1/9 + 1/16 + 1/25 + 1/36 + 1/49 + 1/64 + 1/81
CMR: 2/2 < S < 8/9
S=1/4+1/9+1/16+1/25+1/36+1/49+1/64+1/81=1-1/81=1/81
vô lí vì 2/2 = 1 mà 8/9 < 1
Chứng minh S=1/1+1/16+1/36+1/64+1/100+1/144+1/196<1/2
hình như phân số cuối phải là 1/324
nếu là 1/324 thì tớ giải nè:
S= 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324
= 1/4.(1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2+1/9^2) <1/4.(1+1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9)
= 1/4.(1+1-1/9)
= 1/4.17/9 = 17/36<18/36 = 1/2
=> S= 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324<1/2
Cho S= \(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\frac{1}{36}+\frac{1}{49}+\frac{1}{64}+\frac{1}{81}\)
Chứng minh rằng S < \(\frac{1}{2}\)
Giúp mình, mk cần gấp. Bạn nào nhanh mình tick cho
cho A = 1/4 + 1/9 + 1/16 + 1/25 +1/36 + 1/49 + 1/64 + 1/81 . Chứng tỏ A > 2/5
A=1/22+1/32+...+1/92
Ta có:1/22>1/2.3,1/32>1/3.4,...,1/92>1/9.10
⇒A>1/2.3+1/3.4+...+1/9.10
A>1/2-1/3+1/3-1/4+...+1/9-1/10
A>1/2-1/10
A>2/5(đpcm)
Ta có: A = 1/4 + 1/9 + 1/16 + 1/25 +1/36 + 1/49 + 1/64 + 1/81
Vì 1/22>1/2.3,1/32>1/3.4,...,1/92>1/9.10
=>A>1/2.3+1/3.4+...+1/9.10
=>A>1/2-1/3+1/3-1/4+...+1/9-1/10
=>A>1/2-1/10
=>A>2/5
Giải:
\(A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+\dfrac{1}{25}+\dfrac{1}{36}+\dfrac{1}{49}+\dfrac{1}{64}+\dfrac{1}{81}\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2} +\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}+\dfrac{1}{9^2}\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\)
\(\dfrac{1}{5^2}=\dfrac{1}{5.5}>\dfrac{1}{5.6}\)
\(\dfrac{1}{6^2}=\dfrac{1}{6.6}>\dfrac{1}{6.7}\)
\(\dfrac{1}{7^2}=\dfrac{1}{7.7}>\dfrac{1}{7.8}\)
\(\dfrac{1}{8^2}=\dfrac{1}{8.8}>\dfrac{1}{8.9}\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}>\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{2}{5}\left(đpcm\right)\)
Chúc bạn học tốt!
CHO B=1/4+1/16+1/36+1/64+...+1/144+1/196
CHỨNG TỎ RẰNG B<1/2
Cho A=1/4+1/16+1/36+1/64+1/100+1/144+1/196. Chứng minh rằng A < 1/2
dpcm là điều phải chứng minh nha
Ta có : \(\frac{1}{4}=\frac{1}{2}-\frac{1}{4}\)
\(\frac{1}{16}< \frac{1}{4}-\frac{4}{8}\)
\(\frac{1}{36}< \frac{1}{8}-\frac{1}{12}\)
\(\frac{1}{64}< \frac{1}{12}-\frac{1}{16}\)
\(\frac{1}{100}< \frac{1}{16}-\frac{1}{20}\)
\(\frac{1}{144}< \frac{1}{20}-\frac{1}{24}\)
\(\frac{1}{196}< \frac{1}{24}-\frac{1}{28}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{28}\)
\(=\frac{1}{2}-\frac{1}{28}< \frac{1}{2}\)
Vậy A<1/12