tinh:1/42+1/56+1/72+1/90+1/110+1/132+1/156+1/182+1/210
A=1/42+1/56+1/72+1/90+1/110+1/132+1/156+1/182+1/210
Số cần tìm là:
A = 1/10 = 0,1
k nha
A = \(\frac{1}{10}=0,1\)
Tích cho tớ để đủ 250 điểm đi
=> A = 1/6*7 + 1/7*8 + 1/8*9 + 1/9*10 + ... + 1/13*14 + 1/14*15 = 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10 +...+ 1/13 - 1/14 + 1/14 - 1/15 = 1/6 - 1/15 =1/10 Nhớ ^^
A=1/42+1/56+1/72+1/90+1/110+1/156+1/182+1/210
A=\(\frac{1}{42}+\frac{1}{56}+..............+\frac{1}{210}\)
=\(\frac{1}{6.7}+\frac{1}{7.8}+............+\frac{1}{14.15}\)
=\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+............+\frac{1}{14}-\frac{1}{15}\)
=\(\frac{1}{6}-\frac{1}{15}\)
=\(\frac{1}{10}\)
Tính tổng :
\(A=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}+\frac{1}{182}+\frac{1}{210}\)
\(A=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}+\frac{1}{182}+\frac{1}{210}\)
\(A=\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}+\frac{1}{14.15}\)
\(A=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}\)
\(A=\frac{1}{6}-\frac{1}{15}\)
\(A=\frac{1}{10}\)
A=\(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}+\frac{1}{182}+\frac{1}{210}\)
=\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}+\frac{1}{14.15}\)
=\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{14}-\frac{1}{15}\)
=\(\frac{1}{6}-\frac{1}{15}=\frac{1}{10}\)
Tính tổng:
A= \(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}+\frac{1}{182}+\frac{1}{210}\)
\(A=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+...+\frac{1}{210}=\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+...+\frac{1}{14.15}\)
\(=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+...+\frac{1}{14}-\frac{1}{15}\)
\(=\frac{1}{6}-\frac{1}{15}=\frac{1}{10}\)
\(A=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}+\frac{1}{182}+\frac{1}{210}\)
\(A=\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}+\frac{1}{14.15}\)
\(A=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}\)
\(A=\frac{1}{6}-\frac{1}{15}\)
\(A=\frac{1}{10}\)
1/56+1/72+1/90+1/110+1/132+1/156+1/182+1/210+1/240
giúps mình với mình đang cần gấp
\(\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+....+\frac{1}{240}=\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+...+\frac{1}{15.16}\)
\(=\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+...+\frac{1}{15}-\frac{1}{16}=\frac{1}{7}-\frac{1}{16}=\frac{9}{112}\)
\(=\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}+\frac{1}{14.15}+\frac{1}{15.16}\)
\(=\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{16}\)
\(=\frac{1}{7}-\frac{1}{16}\)
\(=\frac{9}{112}\)
Tách:
56 = 7 x 8
72 = 8 x 9
90 = 9 x 10
110 = 10 x 11
132 = 11 x 12
156 = 12 x 13
182 = 13 x 14
210 = 14 x 15
240 = 15 x 16
=> \(\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+\frac{1}{11\cdot12}+\frac{1}{12\cdot13}+\frac{1}{13\cdot14}+\frac{1}{14\cdot15}+\frac{1}{15\cdot16}\)
Đựợc dãy sai phân, làm tiếp được
\(\frac{1}{7}-\frac{1}{16}=\frac{9}{112}\)
Vậy kết quả là \(\frac{9}{112}\)
B=1/30+1/42+1/56+1/72+1/90+1/110+1/132+1/156
\(B=\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}+\dfrac{1}{156}\)
\(B=\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}+\dfrac{1}{10\cdot11}+\dfrac{1}{11\cdot12}+\dfrac{1}{12\cdot13}\)
\(B=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}\)
\(B=\dfrac{1}{5}-\dfrac{1}{13}=\dfrac{8}{65}\)
B=\(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}+\dfrac{1}{12.13}\)
B=\(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-.......-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\)
B=\(\dfrac{1}{5}-\dfrac{1}{12}=\dfrac{7}{60}\)
(sở dĩ có như trên vì \(\dfrac{1}{x\left(x+1\right)}=\dfrac{1}{x}-\dfrac{1}{x+1}\) nên cứ áp dụng vào là ra nhé)
b = 1/30 + 1/42+ 1/56+1/72+1/90+1/110+1/132+1/156
B = 1/30 + 1/42 + 1/56 + 1/72 + 1/90 + 1/110 + 1/132 + 1/156
B = 1/5x6 + 1/6x7 + 1/7x8 + 1/8x9 + 1/9x10 + 1/10x11 + 1/11x12 + 1/12x13
B = 1/5 -1/6 + 1/6- 1/7 + 1/7 -1/ 8 + 1/8 -1/9 +1/9 -1/10 + 1/10 - 1/11 + 1/11-1/12 +1/12 -1/13
B = 1/5 - 1/13
B = 8/65
1/20+1/30+1/42+1/56+1/72+1/90+1/110+1/132+1/156 = ?
1/20 + 1/30 + 1/42 + ... + 1/156
= 1/4.5 + 1/5.6 + 1/6.7 + .... + 1/12.13
= 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/12 - 1/13
= 1/4 - 1/13
= 9/52
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{12}-\frac{1}{13}\)
\(=\frac{1}{4}-\frac{1}{13}=\frac{9}{52}\)
****
= 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10 + 1/10.11 + 1/11.12 + 1/12.13
= 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/2 - 1/13
= 1/4 - 1/13
= 9/52
Tính 1/20 + 1/30 + 1/42 + 1/56 + 1/ 72 + 1/90 + 1/110 + 1/ 132 + 1/156
Đặt tổng trên là A ta có :
A= 1/ 20 + 1/ 30 + 1/ 42 + 1/ 56 + 1/ 72 + 1/90 + 1/110 + 1 / 123 + 1/ 156
= 1 / 4 x5 + 1/ 5 x 6 + 1/6x 7 + 1/ 7x8 + 1/8x9 + 1/9x10+ 1/ 10x11+ 1 /11x12 +1/12 x 13
= 1/4- 1/5 + 1/ 5 - 1/6 + 1/ 6 - 1/7 + 1/ 7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10+ 1/10 - 1/11 + 1/11 - 1/12+ 1/ 12 - 1/13
= 1 /4 - 1 /13
= 9 /52