tính \(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)
\(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^3}{3.4}.\frac{4^2}{4.5}\)
TÍNH GIÁ TRỊ BIỂU THỨC
hình như là 32 chứ k f 33
\(B=\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}\)
\(B=\frac{\left(1\cdot1\right)\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)}{\left(1\cdot2\right)\left(2\cdot3\right)\left(3\cdot4\right)\left(4\cdot5\right)}\)
\(B=\frac{\left(1\cdot2\cdot3\cdot4\right)\left(1\cdot2\cdot3\cdot4\right)}{\left(1\cdot2\cdot3\cdot4\right)\left(2\cdot3\cdot4\cdot5\right)}\)
\(=\frac{1}{5}\)
\(B=\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}\)
\(B=\frac{1^2\cdot2^2\cdot3^2\cdot4^2}{1\cdot2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot5}\)
\(B=\frac{1^2\cdot2^2\cdot3^2\cdot4^2}{1^2\cdot2^2\cdot3^2\cdot4^2\cdot5}=\frac{1}{5}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)
\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}=\frac{1}{5}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}=\frac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\frac{1}{5}\)
Tính giá trị biểu thức:
\(M=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)
sorry mình nhầm
ta có:
M=\(\frac{1^2}{1.2}\).\(\frac{2^2}{2.3}\).\(\frac{3^2}{3.4}\).\(\frac{4^2}{4.5}\)
=\(\frac{1.1.2.2.3.3.4.4}{1.2.2.3.3.4.4.5}\)
=\(\frac{1}{5}\)
vậy M=\(\frac{1}{5}\)
\(M=\frac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\frac{1}{5}\)
ta có:
\(\frac{1^2}{1.2}\).\(\frac{2^2}{2.3}\).\(\frac{3^2}{3.4}\).
Tính nhanh:
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}.\frac{5^2}{5.6}\)
\(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}.\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}\cdot\frac{5^2}{5\cdot6}\)
\(=\frac{1\cdot1\cdot2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot5\cdot5}{1\cdot2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot5\cdot5\cdot6}\)
\(=\frac{1}{6}\)
A =\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)
HELP
dấu bằng của mk bt liệt nên bạn thông cảm
A bằng (1.2.3.4).(1.2.3.4)/(1.2.3.4).(2.3.4.5) bằng 5
rút gọn cho nhau bạn nhé
Tính nhanh :
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{98.99}+\frac{2}{99.100}\)
Đặt tổng trên là A , ta có :
\(\frac{A}{2}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(\frac{A}{2}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)+\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(\frac{A}{2}=\left(1-\frac{1}{100}\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+...+\left(\frac{1}{98}-\frac{1}{98}\right)+\left(\frac{1}{99}-\frac{1}{99}\right)\)\(\frac{A}{2}=\frac{99}{100}\)
\(A=\frac{99}{100}.2\)
\(A=\frac{99}{50}\)
Tính tổng :
\(S=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...................+\frac{2}{98.99}+\frac{2}{99.100}\)
\(S=\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{98\times99}+\frac{2}{99\times100}\)
\(S=2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)
\(S=2\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(S=2\times\left(1-\frac{1}{100}\right)\)
\(S=2\times\frac{99}{100}\)
\(S=\frac{99}{50}\)
\(S=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{98.99}+\frac{2}{99.100}\)
\(S=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(S=2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}+\frac{1}{100}\right)\)
\(S=2.\left(\frac{1}{1}-\frac{1}{100}\right)\\ S=2.\left(\frac{100}{100}+\frac{-1}{100}\right)\\ S=2.\frac{99}{100}\\ S=\frac{99}{50}\)
/hoi-dap/question/115788.html Giúp mik vs\
Tính:
A = \(\frac{1^2}{1.2}\). \(\frac{2^2}{2.3}\). \(\frac{3^2}{3.4}\). \(\frac{4^2}{4.5}\)
Tính bằng cách hợp lí (nếu có thể) \(\frac{1^2}{1.2}\).\(\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}...\frac{2008^2}{2008.2009}\)