Tìm x, y là các số nguyên thỏa mãn đẳng thức xy^2 = x^2 + x +2
Tìm x,y là các số nguyên thỏa mãn đẳng thức:
x^2 - xy - y + 2 = 0
Help me!!!!
Tìm các số nguyên x, y thỏa mãn đẳng thức:
\(2y^2x+x+y+1=x^2+y^2+xy\)
Tìm các số nguyênc: x, y thỏa mãn đẳng thức |(x-y)2 +2(xy+y2-4y)|=xy+y2-4y
Tìm các số nguyên x, y thỏa mãn đẳng thức : 2y2x – y2 + x + y + 1 = x2 +xy +y2
Câu hỏi của Fire Sky - Toán lớp 8 - Học toán với Em tham khảo tại link này nhé!
bài 1
tìm các cặp số nguyên ( x , y )thỏa mãn một trong các đẳng thức
a \ x + y = xy
b\ xy - x + 2( y - 1 ) = 13
\(a,x+y=xy\)
Do x;y có vai trò như nhau nên không mất tính tổng quát ,:
TH1: \(x=0\)
\(y=0\)
TH2: giả sử \(x\ge y\ge1\)
\(\Rightarrow xy=x+y\le2x\)
\(\Rightarrow y\le2\) \(\left(x\ne0\right)\)
Mà \(y\ge1\Rightarrow y\left\{1;2\right\}\)
\(\Rightarrow TH1:y=1\Rightarrow x-x=1\left(ktm\right)\)
\(TH2:y=2\Rightarrow2x=x+2\Rightarrow x=2\)
TH3: Giả sử \(x\le y\le-1\)
........
Vậy các cặp (x;y) t/m là: .........
Tìm tất cả các cặp số nguyên x,y thỏa mãn đẳng thức : \(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)
Từ đây bạn xét các trường hợp và giải ra nghiệm.
tìm các số nguyên x,y thỏa mãn đẳng thức y^2-(y-2)x^2=1
cho x, y là 2 số nguyên dương khác nhau thỏa mãn đẳng thức xy=3(x+y)-5. Giá trị của x+y là
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn đẳng thức: y(x-1)=x^2+2
Từ phương trình \(y\left(x-1\right)=x^2+2\Rightarrow x^2+2\vdots x-1\to x^2-1+3\vdots x-1\to3\vdots x-1\to x-1=\pm1,\pm3.\)
Do vậy mà \(x=2,0,4,-2\). Tương ứng ta có \(y=6,-2,6,-2\)
Vậy các nghiệm nguyên của phương trình \(\left(x,y\right)=\left(2,6\right),\left(0,-2\right),\left(4,6\right),\left(-2,-2\right).\)