Chứng tỏ rằng tich của 3 số tự nhiên luôn chia hết cho 2.
Các bạn giúp mình nha !!!!!!!!!!!!!!!!!!
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng tỏ rằng mọi số tự nhiên a và b thì các tích sau luôn luôn chia hết cho 2 : tích ( a+3)(2a+1) . Các bạn giải giúp mình nhé , ghi lời giải thích giúp mình nha 😘
tìm các số tự nhiên a và b sao cho a.b=105 và a<b
chứng tỏ rằng với mọi số tự nhiên n thì (n+2017).(n+2018) luôn chia hết cho 2
chứng tỏ rằng với mọi số tự nhiên n thì (n+8).(n+12). (n+7)luôn chia hết cho 3
giúp mình với mình đang gấp!
bài1 chứng tỏ rằng tổng của 3 só tự nhiên liên tiếp chia hết cho 3 và tổng cuả 4 số tự nhiên liên tiếp thì không chia hết cho 4
bài 2 chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6 ) thì chia hết cho 2
Các bạn giải rõ ràng cả hai bì giúp mình với nhé.Mình cảm ơn các bạn nhiều
Bài 1
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là
n+n+1+n+2=3n+3=3(n+1) chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là
n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2
Bài 2
(Xét tính chẵn hoặc lẻ của n)
+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
=> (n+3)(n+6) chia hết cho 2 với mọi n
chứng tỏ rằng
a) trong hai số tự nhiên liên tiếp , có một số chia hết cho 2
b) trong ba số tự nhiên liên tiếp, có một số chia hết cho 3
các bạn giải rõ giúp mình nha
a) Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh .
Nếu a không chia hết cho 2 thì a = 2k + 1 ( k ∈ N)
Suy ra : a + 1 = 2k + 1 + 1
Ta có : 2k ⋮ 2 ; 1 + 1 = 2 ⋮ 2
Suy ra ( 2k +1 +1 ) ⋮ 2 hay ( a+ 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp , có một số chia hết cho 2
b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2
Nếu a chia hết cho 3 thì bài toán được chứng minh
Nếu a không chia hết cho 3 thì a = 3k + 1 hoặc a = 3k + 2 ( k ∈ N)
Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3 ⋮ 3
Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3 ⋮ 3
Vậy trong ba số tự nhiên liên tiếp có một số chia hết cho 3.
a) Gọi hai số tự nhiên liên tiếp là a , a + 1
Nếu a chia hết cho 2 thì bài toán đã được giải
Nếu a = 2k + 1 thì a + 1 = 2k + 2, chia hết cho 2
b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2
Nếu a chia hết cho 3 thì bài toán đã được giải
Nếu a = 3k + 1 thì a + 2 = 3k + 3 , chia hết cho 3
Nếu a = 3k + 2 thì a + 1 = 3k + 3 , chia hết cho 3
Bài này mik học rồi nên mik chắc chắn đúng luôn
Bài 3. Tìm các chữ số sao cho số 7a4b chia hết cho 4 và chia hết cho 7
Bài 2. Tìm số tự nhiên n để 3n +
Bài 4. Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Bài 5. Chứng tỏ rằng tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
Bài 3:
\(\overline{7a4b}\) ⋮ 4 ⇒ \(\overline{4b}\)⋮ 4 ⇒ b = 0; 4; 8
Nếu b = 0 ta có: \(\overline{7a40}\)⋮ 7
⇒ 7040 + a \(\times\) 100 ⋮ 7
1005\(\times\) 7+ 5 + 14a + 2a ⋮ 7
5 + 2a ⋮ 7 ⇒ 2a = 2; 9; 16⇒ a = 1; \(\dfrac{9}{3}\);8 (1)
Nếu b = 8 ta có: \(\overline{7a4b}\) = \(\overline{7a48}\)⋮ 7
⇒ 7048 + a\(\times\) 100 ⋮ 7
1006\(\times\) 7 + 6 + 14a + 2a ⋮ 7
6 + 2a ⋮ 7 ⇒ 2a = 1; 8; 15 ⇒ a = \(\dfrac{1}{2}\); 4; \(\dfrac{15}{2}\) (2)
Nếu b = 4 ta có: \(\overline{7a4b}\) = \(\overline{7a44}\) ⋮ 7
⇒ 7044 + 100a ⋮ 7
1006.7 + 2 + 14a + 2a ⋮ 7
2 + 2a ⋮ 7 ⇒ 2a = 5; 12;19 ⇒ a = \(\dfrac{5}{2}\); 6; \(\dfrac{9}{2}\) (3)
Kết hợp (1); (2); (3) ta có:
(a;b) = (1;0); (8;0); (4;8); (6;4)
Chứng tỏ rằng:
a) Trong 2 số tự nhiên liên tiếp, có một số chia hết cho 2
b) Trong 3 số tự nhiên liên tiếp, có một số chia hết cho 3
các bạn giúp mình nhé, mình đang vội
1.Chứng tỏ rằng:
a)Trong hai số tự nhiên liên tiếp ,có một số chia hết cho 2
b)Trong hai số tự nhiên liên tiếp ,có một số chia hết cho 3
2.Chứng tỏ rằng:
a)Tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3
b)Tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4
3.Chứng tỏ rằng số có dạng aaaaaa bao giờ cũng chia hết cho 7
4.Chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11
5. Chứng tỏ rằng nếu hai số có cùng số dư khi chia co 7 thì hiệu của chúng chia hết
Giúp mình nha mình đang gấp lắm!!!
Câu 5 là chỗ cuối cùng là chia hết cho 7 nha .mình quên ghi
Chứng tỏ rằng với mọi số tự nhiên n thì ( n + 23 ) . ( n + 28 ) chia hết cho 2
Giúp mình nha các bạn mình cần gấp !
Xét 2 trường hợp
1.n=2k =>n+28=2k+28 chia hết cho 2 =>(n+23)(n+28) chia hết cho 2
2.n=2k+1 =>n+23=2k+1+23=2k+24 chia hết cho 2 =>(n+23)(n+28) chia hết cho 2
Chứng tỏ rằng : Tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3
Giúp mình nhé !
gọi 3 số tự nhiên liên tiếp là a;a+1;a+2
tổng của 3 số tự nhiên liên tiếp:
a + a + 1 + a + 2
= (a+a+a) + (1+2)
= a.3 + 3
vì 3 \(⋮\)3 => a.3 \(⋮\)3 (1)
3 \(⋮\)3 (2)
(1)(2) => a.3 + 3 chia hết cho 3
vậy tổng của 3 số tự nhiên liên tieps chia hết cho 3