Những câu hỏi liên quan
H24
Xem chi tiết
PT
9 tháng 2 2016 lúc 15:12

M = a / a+b = b / b+c = c / c+a = a + b + c / (a+b) + (b+c) + (c+a) = a+b+c / (a+a) + (b+b) + (c+c)

= a+b+c / 2a + 2b + 2c = a+b+c / 2(a+b+c) = 1/2 không phải là số nguyên => M không thuộc Z. 

Bình luận (0)
HP
9 tháng 2 2016 lúc 16:41

Phan Thanh Tịnh giải sai bét rồi, "+" chứ có phải "-" đâu mà áp dung dãy tỉ số bằng nhau đc

Bình luận (0)
KG
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LD
Xem chi tiết
NC
7 tháng 2 2020 lúc 14:53

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
TT
12 tháng 3 2022 lúc 17:01

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
SC
Xem chi tiết
NQ
14 tháng 12 2017 lúc 20:47

Vì a/a+b > 0 nên a/a+b > a/a+b+c

Tương tự : b/b+c > b/a+b+c ; c/c+a > c/a+b+c

=> m > a+b+c/a+b+c = 1 (1)

Lại có : 0 < a/a+b < 1 nên a/a+b < a+c/a+b+c

Tương tự : b/b+c < b+a/a+b+c ; c/c+a < c+b/a+b+c

=> m < 2a+2b+2c/a+b+c = 2 (2)

Từ (1) và (2) => 1 < m < 2

=> m ko phải là số nguyên

k mk nha

Bình luận (0)
TM
Xem chi tiết
NP
24 tháng 11 2015 lúc 22:29

ta cần chứng minh nó lớn hơn 1 và nhỏ hơn 2

Do a;b;c và d là các số nguyên dương => 
a + b + c < a + b + c + d 
a + b + d < a + b + c + d 
a + c + d < a + b + c + d 
b + c + d < a + b + c + d 
=> a/(a + b + c) > a/(a + b + c + d) (1) 
b/(a + b + d) > b/(a + b + c + d) (2) 
c/(b + c + d) > c/(a + b + c + d) (3) 
d/(a + c + d) > d/(a + b + c + d) (4) 
Từ (1);(2);(3) và (4) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > a/(a + b + c + d) + b/(a + b + c + d) + c/(a + b + c + d) + d/(a + b + c + d) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > (a + b + c + d)/(a + b + c + d) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > 1 
=> B > 1 (*) 

Ta có: (a + b + c)(a + d) - a(a + b + c + d) 
= a² + ad + ab + bd + ac + cd - (a² + ab + ac + ad) 
= a² + ad + ab + bd + ac + cd - a² - ab - ac - ad 
= bd + cd 
Do a;b;c và d là số nguyên dương 
=> bd + cd > 0 
=> (a + b + c)(a + d) - a(a + b + c + d) > 0 
=> (a + b + c)(a + d) > a(a + b + c + d) 
=> (a + d)/(a + b + c + d) > a/(a + b + c) (5) 
Chứng minh tương tự ta được: 
(b + c)/(a + b + c + d) > b/(a + b + d) (6) 
(a + c)/(a + b + c + d) > c/(b + c + d) (7) 
(b + d)/(a + b + c + d) > d/(a + c + d) (8) 
Cộng vế với vế của (5);(6);(7) và (8) ta được: 
(a + d)/(a + b + c + d) + (b + c)/(a + b + c + d) + (a + c)/(a + b + c + d) + (b + d)/(a + b + c + d) > a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) 
=> (a + d + b + c + a + c + b + d)/(a + b + c + d) > B 
=> 2(a + b + c + d)/(a + b + c + d) > B 
=> 2 > B (*)(*) 
Từ (*) và (*)(*) 
=> 1 < B < 2 
=> B không phải là số nguyên

Bình luận (0)
LK
13 tháng 4 2016 lúc 20:12

Ta có: a/a+b <a/a+b+c    (1)

           b/b+c <b/a+b+c     (2) 

           c/c+a <c/a+b+c      (3)

Từ (1),(2),(3)  =>    a/a+b    +   b/b+c   +    c/c+a    >     a/a+b+c  +   b/a+b+c   +    c/a+b+c

                                                                                       = a+b+c/a+b+c

                                                                                       =1

VẬY : M>1

Ta có :

              a/a+b    <   a+c/a+b+c     (1)

              b/b+c    <   b+a/a+b+c     (2)

              c/c+a     <   c+b/a+b+c     (3)

Từ (1),(2),(3) =>  a/a+b    +   b/b+c   +    c/c+a    <     a+c/a+b+c    +      b+a/a+b+c      +    c+a/a+b+c 

                                                                                   =     2.(a+b+c)/a+b+c

                                                                                   =     2

=>          1<M<2          

=>          M không phải là số nguyên

Bình luận (0)
DT
18 tháng 12 2017 lúc 6:15
ta có công thức.Nếu a,b,c là các số nguyên dương thì a/ba/a+b
Bình luận (0)
H24
Xem chi tiết
VD
28 tháng 12 2015 lúc 0:27

ta có\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{c+a+b}=1\)

ta lại có tương tự M<2

suy ra Mko ơphair số nguyên

Bình luận (0)
HE
Xem chi tiết