Những câu hỏi liên quan
PM
Xem chi tiết
TN
6 tháng 5 2016 lúc 20:29

ta có:1/2!<1

2/3!<1

......

......

2015/2016!<1

=>A=1/2!+2/3!+3/4!+......+2015/2016! luôn luôn <1

Bình luận (0)
PL
16 tháng 4 2018 lúc 21:47

Ko biét làm

Bình luận (0)
ND
Xem chi tiết
MP
Xem chi tiết
H2
Xem chi tiết
BN
Xem chi tiết
TN
30 tháng 1 2016 lúc 12:41

câu 1: tích 1.2.3.4...2015 hơn tích 1.2.3.4...2014 1 thừa số là thừa số 2014

=[1.2.3.4...(2014.2014)]-1.2.3.4...20142

=> tích đó =0

câu 2:

2016x +(1+3+5+ …+2015) = 2016 (*)
Tổng : 1+3+5+ …+2015 có: (2015-1):2+1= 1008 số hạng
= > Tổng : 1+3+5+ …+2015 có: 504 cặp số
Từ (*) = > 1009x + (2015+1).504 = 2016
= > 1009x = 2016.(1-504) = > x = (-1006)



Bình luận (0)
TN
30 tháng 1 2016 lúc 12:47

câu 2 sai vì tui nhìn tưởng đề là x+(x+1)+(x+3)+(x+5)+...+(x+2015)=2016

Bình luận (0)
GN
Xem chi tiết
PD
2 tháng 8 2018 lúc 21:42

\(N=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(N=\left(1+\frac{1}{3}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+...+\frac{1}{2016}\right)\)

\(N=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1008}\right)\)

\(N=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}=K\)

Bình luận (0)
SN
Xem chi tiết
MV
14 tháng 5 2017 lúc 8:32

\(E=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{2015}{3^{2015}}-\dfrac{2016}{3^{2016}}\\ 3E=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{2015}{3^{2014}}-\dfrac{2016}{3^{2015}}\\ 3E+E=\left(1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{2015}{3^{2014}}-\dfrac{2016}{3^{2015}}\right)+\left(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{2015}{3^{2015}}-\dfrac{2016}{3^{2016}}\right)\\ 4E=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}-\dfrac{1}{3^{2015}}-\dfrac{2016}{3^{2016}}\\ 4E< 1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}-\dfrac{1}{3^{2015}}\left(1\right)\)

Gọi \(D=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{2015}}\)

\(3D=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{2013}}-\dfrac{1}{3^{2014}}\\ 3D+D=\left(3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{2013}}-\dfrac{1}{3^{2014}}\right)+\left(1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}-\dfrac{1}{3^{2015}}\right)\\ 4D=3-\dfrac{1}{3^{2015}}< 3\\ \Rightarrow D< \dfrac{3}{4}\left(2\right)\)

Từ (1) và (2) ta có:

\(4E< \dfrac{3}{4}\\ \Rightarrow E< \dfrac{3}{16}\)

Bình luận (1)
LN
Xem chi tiết
PL
7 tháng 5 2019 lúc 12:14

Bài 3

\(\frac{n+6}{n+1}=\frac{n+1+5}{n+1}=\frac{n+1}{n+1}+\frac{5}{n+1}\)

\(=1+\frac{5}{n+1}\)

Vậy để \(\frac{n+6}{n+1}\in Z\Rightarrow1+\frac{5}{n+1}\in Z\)

Hay \(\frac{5}{n+1}\in Z\)\(\Rightarrow n+1\inƯ_5\)

 \(Ư_5=\left\{1;-1;5;-5\right\}\)

\(n+1=1\Rightarrow n=0\)

\(n+1=-1\Rightarrow n=-2\)

\(n+1=5\Rightarrow n=4\)

\(n+1=-5\Rightarrow n=-6\)

Vậy \(n\in\left\{0;-2;4;-6\right\}\)

Bình luận (0)

Bài 2:

\(\frac{10}{3.8}+\frac{10}{8.13}+\frac{10}{13.18}+\frac{10}{18.23}+\frac{10}{23.28}=2\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{23}-\frac{1}{28}\right)\\ =2\left(\frac{1}{3}-\frac{1}{28}\right)\\ =2.\frac{56}{84}\\ =\frac{56}{42}=\frac{28}{21}\)

Bình luận (0)
DL
Xem chi tiết
NM
27 tháng 11 2020 lúc 19:41

khó quá 

Bình luận (0)
 Khách vãng lai đã xóa