Cho a,b,c là các số nguyên khác 0. Hỏi ba biểu thức a19 .b5; b19.c5 và c19.a5 có thể cùng giá trị nguyên âm hay không ?
1. Cho biểu thức A=(-a-b+c)-(-a-b-c). Hãy rút gọn biểu thức A
2.Tìm tất cả các số nguyên a biết (6a+1) chia hết cho (3a-1)
3.Tìm số nguyên a,b biết a>0 và a(b-2)=3
4.Chứng minh rằng nếu 2 số a,b là 2 số nguyên khác 0 và a là bội của b;b là bội của a thì a=b hoặc a=-b
Cho đa thức P(x)= ax^2 +bx+c trong đó các hệ số a, b, c là các số nguyên khác 0.Chứng minh rằng nếu đa thức có 1 nghiệm là số nguyên khác 0 thì nghiệm đó là ước của c.
CHO A,B,C LÀ CÁC SỐ KHÁC 0 TRONG ĐÓ CÓ 2 SỐ NGUYEN ÂM MỘT SỐ LÀ SỐ NGUYÊN DƯƠNG HỎI BA SỐ ĐÓ LÀ SỐ NÀO NẾU
A) A.B=C MŨ 2008
B)/A/MŨ 2009= B.C
Cho a, b, c là ba số khác 0 thỏa mãn: ab/a+b=bc/b+c=ca/c+a ( với giả thiết các tỉ số đều có nghĩa) và a+b=c=1 tính giá trị của biểu thức A=abc(a2+b2+c2)/ab+bc+ca
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1+1+1}{a+b+c}=\dfrac{3}{a+b+c}=\dfrac{3}{1}=3\)
\(\Rightarrow a=b=c=\dfrac{1}{3}\)
\(\Rightarrow A=\dfrac{a^3\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=a^3=\left(\dfrac{1}{3}\right)^3=\dfrac{1}{27}\)
21 Cho ba số phân biệt a,b,c . Chứng minh rằng biểu thức
A=a^4(b-c)+b^4(c-a)+c^4(a-b) luôn khác 0
23 Cho x, y là các số dương thỏa mãn điều kiện 9y(y-x)= 4x^2
Tính giá trị biểu thức\(\frac{x-y}{x+y}\)
24 Cho x,y là số khác 0 sao cho 3x^2-y^2=2xy
Tính giá trị của phân thức A= \(\frac{2xy}{-6x^2+xy+y^2}\)
21. Phân tích A thành \(A=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a^2+b^2+c^2+ab+bc+ac\right)\). Từ đó dễ dàng chứng minh.
23. \(9y\left(y-x\right)=4x^2\Leftrightarrow9y^2-9xy=4x^2\Leftrightarrow4x^2+9xy-9y^2=0\)
Chia cả hai vế của đẳng thức trên với \(y^2>0\)được :
\(4\left(\frac{x}{y}\right)^2+\frac{9x}{y}-9=0\). Đặt \(t=\frac{x}{y},t>0\)(Vì x,y dương)
\(\Rightarrow4^2+9t-9=0\Leftrightarrow\orbr{\begin{cases}t=\frac{3}{4}\left(\text{nhận}\right)\\t=-3\left(\text{loại}\right)\end{cases}}\)
Vậy \(\frac{x}{y}=\frac{3}{4}\Rightarrow y=\frac{4x}{3}\)thay vào biểu thức được :
\(\frac{x-y}{x+y}=\frac{x-\left(\frac{4x}{3}\right)}{x+\left(\frac{4x}{3}\right)}=-\frac{1}{7}\)
24. Tương tự câu 23 , ta được \(x=y\) hoặc \(y=-3x\)(loại trường hơp này vì mẫu thức phải khác 0)
Vậy với x = y được \(A=-\frac{1}{2}\)
Cho a,b,c là số nguyên. Hỏi ba biểu thức a.b^5,b.c^5, c.a^5 là số nguyên âm được không? Vì sao?
Cho a, b, c là ba số khác 0 thỏa mãn: ab/a+b=bc/b+c=ca/c+a (với giả thiết các tỉ số đều có nghĩa).
Tính giá trị của biểu thức M=ab+bc+ca / a^2+b^2+c^2
với a,b,c khác 0 ta có:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) => \(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)=>\(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\) =>\(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\) =>a=b=c => M=1
cho a,b,c là ba số thực phân biệt khác 0 thỏa mãn a+b+c=0. Rút gọn biểu thức: P=(a/(b-c)+b/(c-a)+c/(a-b)).((b-c)/a+(c-a)/b+(a-b)/c)
1> cho a,b,c là các số hữu tủ khác 0 thoả mãn a+b+c=0. CMR: M= 1/a^2+ 1/b^2 + 1/c^2
2> rút gọn biểu thức sau và tìm giá trị nguyên của x để biểu thức có giá trị nguyên
M = ( x^2-2x / 2x^2+8 - 2x^2 / 8-4x+2x^2-x^3 ).( 1 - 1/x - 2/x^2 )
3> cho a,b,c là các số không âm và không lớn hơn 2 thoả mãn a+b+c=0. CMR a^2 + b^2 + c^2 <_ 5