Những câu hỏi liên quan
TP
Xem chi tiết
LP
4 tháng 10 2023 lúc 16:44

 Nếu m hoặc n chia hết cho 3 thì hiển nhiên \(nm\left(m^2-n^2\right)⋮3\)

 Nếu cả m và n đều không chia hết cho 3 thì \(m^2,n^2\) đều chia 3 dư 1 (tính chất của số chính phương). Do đó \(m^2-n^2⋮3\) nên \(mn\left(m^2-n^2\right)⋮3\)

 Vậy \(mn\left(m^2-n^2\right)⋮3\) với mọi cặp số nguyên m, n.

Bình luận (0)
HA
Xem chi tiết
PL
Xem chi tiết
AH
24 tháng 6 2024 lúc 11:05

Lời giải:

Nếu $m$ hoặc $n$ chia hết cho $3$ thì hiển nhiên $mn(m^2-n^2)\vdots 3$.

Nếu $m$ và $n$ đều không chia hết cho $3$

$\Rightarrow m^2, n^2$ chia 3 dư $1$ (tính chất số chính phương)

$\Rightarrow m^2-n^2\vdots 3$

$\Rightarrow mn(m^2-n^2)\vdots 3$

Vậy $mn(m^2-n^2)\vdots 3$ với mọi $m,n$ nguyên.

Bình luận (0)
PE
Xem chi tiết
ST
Xem chi tiết
DL
8 tháng 12 2015 lúc 21:35

a)Nếu n=2k(kEN)

thì n2+n+1=4k^2+2k+1(ko chia hết cho 2, vì 1 ko chia hết cho 2)

Nếu n=2k+1(kEN)

thì n2+n+1=n(n+1)+1=(2k+1)(2k+1+1)+1=(2k+1)(2k+2)+1=(2k)(2k+2)+2k+2+1=4k^2+4k+2k+2+1=4k^2+6k+3(ko chia hết cho 2 vì 3 ko chia hết cho 2)

Vậy với mọi nEN thì n2+n+1 ko chia hết cho 2

b)n(n+1)(5n+1)=(n2+n)(5n+1)=5n3+n2+5n2+n

Nếu n=2k(kEN )

thì n(n+1)(5n+1)=10k3+2k2+10k2+2k(chia hết cho 2)

Nếu n=2k+1(kEN)

thì n(n+1)(5n+1)=5(2k+1)3+(2k+1)+5(2k+1)2+2k+1=...................................

tương tự, n=3k;3k+1;3k+2

mỏi tay chết đi được, mấy con số còn bay đi lung tung

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 1 2018 lúc 10:13

gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3

Bình luận (1)
PB
Xem chi tiết
CT
25 tháng 7 2018 lúc 5:29

gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.

=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.

3a chia hết cho 3,3 cũng chia hết cho 3

=> tổng này luôn luôn chia hết cho 3.

Bình luận (0)
TM
Xem chi tiết
AH
29 tháng 1 2022 lúc 12:26

Bài 4:

$A+2=1+2+2^2+2^3+...+2^{11}$

$=(1+2)+(2^2+2^3)+....+(2^{10}+2^{11})$

$=(1+2)+2^2(1+2)+....+2^{10}(1+2)$

$=(1+2)(1+2^2+....+2^{10})$

$=3(1+2^2+...+2^{10})\vdots 3$

Vậy $A+2\vdots 3$ nên $A$ không chia hết cho $3$

Bình luận (1)
AH
29 tháng 1 2022 lúc 12:27

Bài 5:

$n^2+n+1=n(n+1)+1$
Vì $n,n+1$ là hai số tự nhiên liên tiếp nên sẽ tồn tại một số chẵn và 1 số lẻ

$\Rightarrow n(n+1)$ chẵn 

$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ (điều phải chứng minh) 

 

Bình luận (1)
LT
Xem chi tiết