Những câu hỏi liên quan
DL
Xem chi tiết
H24
24 tháng 2 2019 lúc 22:07

ĐK: n thuộc N* nhé :))

\(A=444..4\left(2n\text{ c/s }4\right)-888..8\left(n\text{ c/s }8\right)=\overline{444...44355..56}\left(n-1\text{ c/s }4,5\right)=66..6^2\left(n\text{ c/s }6\right)\)

t biết có phải c/m không? 

Bình luận (0)
DL
24 tháng 2 2019 lúc 22:45

Uầy! Sao bạn căn được giỏi vậy. Hack ak!

Bình luận (0)
H24
24 tháng 2 2019 lúc 22:49

hack cái đéo gì >:? 

Bình luận (0)
BT
Xem chi tiết
QA
Xem chi tiết
TN
Xem chi tiết
NT
Xem chi tiết
RC
Xem chi tiết
TK
31 tháng 7 2018 lúc 10:35

Thay \(a=444...4;\) \(b=222...2;\) \(c=888...8\) vào biểu thức ta được
\(C=444...4+222...2+888...8+7\)
\(\Leftrightarrow C=4\left(111...1\right)+2\left(111...1\right)+8\left(111...1\right)+7\)
................2n c/s 4.........n+1 c/s 2..........n c/s 8...........
Đặt 111.11(n c/s 1) \(=a\)
\(\Rightarrow\)999...9(n c/s 9) \(\) \(=9a\Rightarrow999...9+1=9a+1\Rightarrow10^n=9a\)
Đặt 111...1(2n c/s 1) \(=111...1000..0+111...1=111...1\times10^n+111...1=a\left(9a+1\right)+a=9a^2+2a\)
Đặt 111...1(n+1 c/s 1)
\(=111...10+1=111...1\times10+1=10a+1\)
\(\Rightarrow C=4\left(9a^2+2a\right)+2\left(10a+1\right)+8a+7=36a^2+36a+9=\left(6a+3\right)^3=\left(666...6+3\right)^2=666...69^2 \)(n-1 c/s 6)
Vậy C là một chính phương

(má ơi làm bài này mệt như j í ><)

Bình luận (0)
RC
31 tháng 7 2018 lúc 15:21

Mấy bạn giải theo công thức
\(\overline{aaa....aa}=\dfrac{10^n-1}{9}\)
(n c/s a)

Bình luận (0)
LQ
Xem chi tiết
LP
31 tháng 7 2023 lúc 19:31

a) \(A=111...1555...56\) (n cs 1, n-1 cs 5)

\(A=111...1000...0+555...50+6\) (n cs 1, n cs 0 (không tính số 0 ở số 555...50), n-1 cs 5)

\(A=111...1.10^n+555...5.10+6\) (n cs 1, n-1 cs 5)

\(A=\dfrac{999...9}{9}.10^n+\dfrac{5}{9}.999...9.10+6\) (n cs 9 ở phân số thứ nhất, n-1 cs 9 ở phân số thứ 2)

\(A=\dfrac{10^n-1}{9}.10^n+\dfrac{5}{9}.\left(10^{n-1}-1\right).10+6\)

\(A=\dfrac{\left(10^n\right)^2-10^n+5.10^n-50+54}{9}\)

\(A=\dfrac{\left(10^n\right)^2+4.10^n+4}{9}\)

\(A=\left(\dfrac{10^n+2}{3}\right)^2\)

 Hiển nhiên \(3|10^n+2\) vì \(10^n+2\) có tổng các chữ số bằng 3, suy ra A là số chính phương.

Câu b áp dụng kĩ thuật tương tự nhé bạn.

 

Bình luận (0)
NQ
Xem chi tiết
VM
14 tháng 12 2021 lúc 21:06

Khó quá tui ko làm đc

Bình luận (0)
 Khách vãng lai đã xóa
TX
Xem chi tiết
DH
20 tháng 8 2017 lúc 12:43

\(A=444....444=4.111.....111=4.\frac{10^{2n}-1}{9}\)

\(B=888.....888=8.111.....111=8.\frac{10^n-1}{9}\)

\(\Rightarrow A+2B+4=\frac{4.10^{2n}-4+16.10^n-16+36}{9}=\frac{4.10^{2n}+16.10^n+16}{9}=\left(\frac{2.10^n+4}{3}\right)^2\)

là số hính phương (đpcm)

Bình luận (0)
DH
20 tháng 8 2017 lúc 12:51

2) Ta có :

\(x^4+6x^2+25=x^4+10x^2+25-4x^2=\left(x^2+5\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+5\right)\left(x^2+2x+5\right)\)(1)

\(3x^4+4x^2+28x+5=\left(3x^4+6x^3+x^2\right)+\left(-6x^3-12x^2-2x\right)+\left(15x^2+30x+5\right)\)

\(=x^2\left(3x^2+6x+1\right)-2x\left(3x^2+6x+1\right)+5\left(3x^2+6x+1\right)\)

\(=\left(x^2-2x+5\right)\left(3x^2+6x+1\right)\)(2)

Từ (1) ; (2) \(\Rightarrow f\left(x\right)=x^2-2x+5\Rightarrow f\left(2011\right)=2011^2-2.2011+5=4040104\)

Bình luận (0)