Những câu hỏi liên quan
NK
Xem chi tiết
CM
11 tháng 11 2020 lúc 22:09

a,Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3

Tương tự, ta được q2-1 chia hết cho 3

Suy ra: p2-q2 chia hết cho 3(1)

Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8

Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8

Suy ra :p2-qchia hết cho 8(2)

Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24

Bình luận (0)
 Khách vãng lai đã xóa
CT
Xem chi tiết
OT
Xem chi tiết
OT
19 tháng 5 2016 lúc 13:07

a) Số nguyên tố lớn hơn 3 thì không chia hết cho 8, 4 và cho 2. Một số chia cho 8 dư 0, 1, 2,3, 4, 5, 6,7 => Nếu số là nguyên tố lớn hơn 3 thì khi chia cho 8 phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia 8 dư 2 thì nó viết dạng 8k + 2 chia hết cho 2, tương tự vậy không thể chia cho 8 dư 4 và dư 6)=> Số nguyên tố bình phương lên chia cho 8 dư 1 (vì 12 chia 8 dư 1, 32 =9 chia 8 dư 1, 52 =25 chia 8 dư 1, 72 = 49 chia 8 dư 1).

Vậy cả p2 và q2 chia 8 đều dư 1 => Hiệu p2 - q2 chia hết cho 8 (vì trừ cho nhau phần dư sẽ triệt tiêu).

Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 => Bình phương số đó khi chia cho 3 dư 1 ( vì 12 = 1 chia 3 dư 1; 22 =4 chia 3 dư 1) => p2 và q2 chia cho 3 đều dư 1 => Hiệu p2 - q2 chia hết cho 3 (phần dư 1 sẽ triệt tiêu đối với phép trừ)

=> p2 - q2 chia hết cho cả 8 và 3, mà 8 và 3 là hai số nguyên tố cùng nhau => p2 - q2 chia hết cho 8x3 =24

Bình luận (0)
LP
19 tháng 5 2016 lúc 14:15

Gửi câu hỏi mà lại chính mình trả lời 

Bình luận (0)
AT
Xem chi tiết
TH
16 tháng 4 2022 lúc 21:52

-Vì p,q là 2 số nguyên tố lớn hơn 3 \(\Rightarrow\)p,q có dạng \(3k+1\) hoặc \(3h+2\).

-Có: \(p^2-q^2=p^2+pq-pq-q^2=p\left(p+q\right)-q\left(p+q\right)=\left(p+q\right)\left(p-q\right)\).

*\(p=3k+1;q=3h+2\).

\(p^2-q^2=\left(3k+1+3h+2\right)\left(3k+1-3h-2\right)=\left(3k+3h+3\right)\left(3k+1-3h-2\right)⋮3\)

-Các trường hợp p,q có cùng số dư (1 hoặc 2) khi chia cho 3:

\(\Rightarrow\left(p^2-q^2\right)⋮3̸\).

-Vậy \(\left(p^2-q^2\right)⋮3\)

 

Bình luận (0)
H24
Xem chi tiết
TH
11 tháng 2 2016 lúc 8:47

a, a+k và a+2k là các số nguyên tố lớn hơn 3 ---> 3 số đó đều là số lẻ 
---> k chẵn (vì a lẻ và a+k lẻ) 
k chẵn nên k có thể có 3 dạng sau k = 6m; k = 6m+2 ; k = 6m+4 (m thuộc N) 
1) Nếu k = 6m+2. 
...Xét 2 TH : 
...+ a chia 3 dư 1 : 
.....Khi đó a+k = a+6m+2 chia hết cho 3 (mâu thuẫn với giả thiết a+k là số n/tố) 
...+ a chia 3 dư 2 : 
.....Khi đó a+2k = a+12m+4 chia hết cho 3 (trái với giả thiết a+2k là số n/tố) 
2) Nếu k = 6m+4 
...Xét 2 TH : 
...+ a chia 3 dư 1 
....Khi đó a+2k = a+12m+8 chia hết cho 3 (trái với giả thiết) 
...+ a chia 3 dư 2 
....Khi đó a+k = a+6m+4 chia hết cho 3 (trái giả thiết) 
Vậy 2 khả năng k = 6m+2 và k = 6m+4 bị loại 
---> k = 6m hay k chia hết cho 6.

Tích cho mình nha !

Bình luận (0)
CN
Xem chi tiết
LD
16 tháng 8 2018 lúc 9:24

Bạn có muốn biết nơi nào bạn sẽ vừa HỌC vừa KIẾM TIỀN được không?

BÀI TẬP KHÓ?
CÓ ALFAZI
Năm học mới rồi, các bạn bè các anh chị hỗ trợ bài tập, hướng dẫn học tập, cuối năm đạt kết quả tốt? ✅Bạn không có ai để làm điều đó
Truy cập: https://alfazi.edu.vn để trao đổi bài tập, chia sẻ tài liệu và tham gia hoạt động bổ ích cho học sinh, sinh viên nhé!
Đặc biệt, khi bạn tham gia giải đáp bài tập, bạn sẽ nhận được “phụ cấp” siêu khủng từ Web!
Một web học tập rất thân thiện, môi trường học tập cực tốt, Các bạn đừng bỏ phí cơ hội này nhé!
Web rất hân hạnh được đón tiếp những tài năng tương lai của đất nước!
❤️❤️😘😘😘Love you💋💋

TRUY CẬP HTTPS://ALFAZI.EDU.VN ĐỂ NHẬN 20.000 SAU KHI ĐĂNG KÍ!

Bình luận (0)
NA
16 tháng 8 2018 lúc 9:29

Số ngto lớn hơn 3 có dang 3k+1; 3k+2

Ta có p2 -1 = (p-1)(p+1) [HĐT 3]

Nếu p = 3k+1 => p2-1 =( 3k+1-1)(3k+1+1)=3k(3k+2) \(⋮3\left(1\right)\)

Nếu p = 3k+2 =. p2-1=(3k+2-1)(3k+2+1)=(3k+1)(3k+3)\(⋮3\left(2\right)\)

(1),(2) => đpcm

Bình luận (0)
H24
16 tháng 8 2018 lúc 9:44

Ta có : \(p^2-1=\left(p-1\right)\left(p+1\right)\)

p là số nguyên tố > 3 => p ko chia hết cho 3

Ta lại có : p - 1 , p , p + 1 là 3 số tự nhiên liên tiếp

Trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3

Mà p ko chia hết cho 3 

Nên một trong 2 số p - 1 và p + 1 có 1 số chia hết cho 3

=> ( p - 1 )( p + 1 ) chia hết cho 3                           

=> p^2 - 1 chia hết cho 3

Bình luận (0)
TG
Xem chi tiết
MD
Xem chi tiết
NK
Xem chi tiết