Những câu hỏi liên quan
H24
Xem chi tiết
.
18 tháng 3 2019 lúc 19:29

Ta có \(\frac{a}{a+b+c}\)\(\frac{a}{a+b+c+d}\)

       \(\frac{b}{b+c+a}\)\(\frac{b}{b+c+a+d}\)

        tương tự ....

suy ra cái đề > 1 dpcm

Bình luận (0)
VD
10 tháng 5 2020 lúc 20:25

ko biet thi dung lam nhe con

Bình luận (0)
 Khách vãng lai đã xóa
NH
10 tháng 5 2020 lúc 20:29

Ồ,ra là vậy

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
TL
10 tháng 7 2015 lúc 20:16

+ Vì a+ b + c > a + b => \(\frac{a}{a+b+c}

Bình luận (0)
SN
10 tháng 7 2015 lúc 20:11

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(1

Bình luận (0)
TH
Xem chi tiết
NV
Xem chi tiết
NV
15 tháng 1 2019 lúc 20:38

Mình đang cần gấp nên các bạn giúp mình với

Bình luận (0)
FT
Xem chi tiết
NG
Xem chi tiết
NG
20 tháng 1 2017 lúc 12:36

giúp nha

Bình luận (0)
H24
Xem chi tiết
VD
20 tháng 3 2022 lúc 10:21

Tham khảo:Câu hỏi của Tâm Lê Huỳnh Minh - Toán lớp 7 - Học trực tuyến OLM

Bình luận (0)
VK
Xem chi tiết
HH
2 tháng 4 2018 lúc 20:58

\(\frac{a}{b+c}>\frac{a}{a+b+c},\frac{b}{b+c}>\frac{b}{b+c+a},\frac{c}{c+a}>\frac{c}{c+a+b}\)

\(\Rightarrow A>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c},\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{b+a}{b+c+a},\frac{c}{a+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{c+a+b}\)

\(\Rightarrow A< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Vậy \(1< A< 2\Rightarrow A\)không phải là một số nguyên dương

Bình luận (0)
NJ
2 tháng 4 2018 lúc 20:15

bài này mình làm rồi

Bình luận (0)
TT
Xem chi tiết