cho a, b,c,d là số nguyên dương. Chứng tỏ rằng:
1<a/a+b+c+b/b+c+d+c/c+d+a+d/d+c+b<2
Cho a,b,c,d là các số nguyên dương. Chứng tỏ rằng a/a+b+c + b/b+c+a + c/c+d+a + d/d+a+c >1
Ta có \(\frac{a}{a+b+c}\)> \(\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+a}\)> \(\frac{b}{b+c+a+d}\)
tương tự ....
suy ra cái đề > 1 dpcm
ko biet thi dung lam nhe con
Ồ,ra là vậy
Cho a,b,c là các số nguyên dương. Hãy chứng tỏ rằng: D=(a/a+b)+(b/b+c)+(c/c+a) không phải là số nguyên
+ Vì a+ b + c > a + b => \(\frac{a}{a+b+c}
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(1
cho a,b,c,d là các số nguyên dương, chứng tỏ rằng:
1< a/a+b+c +b/b+c+d +c/c+d+a +d/d+a+b <2
Cho a , b , c , d là các số nguyên dương . Chứng tỏ rằng :
a/a+b+c + b/b+c+d + c/c+d+a + d/d+a+b nhỏ hơn 2 và lớn hơn 1
Mình đang cần gấp nên các bạn giúp mình với
Cho a, b, c, d là các sống nguyên dương chứng tỏ rằng
1< a/a+b+c + b/b+c+d +c/c+d+a
a, Cho 22 số nguyên trong đó tổng của 3 số bất kì là 1 số nguyên dương . chứng tỏ rằng tổng của 22 số đã cho là 1 số nguyên dương
b, cho 36 số nguyên trong đó tổng của 7 số bất kì là 1 số nguyên âm . Chứng tỏ rằng tổng của 36 số nguyên đó là 1 số âm
Cho a,b,c là các số nguyên dương. Chứng tỏ rằng: M= a/a+b + b/b+c + c/c+a không là số nguyên
Tham khảo:Câu hỏi của Tâm Lê Huỳnh Minh - Toán lớp 7 - Học trực tuyến OLM
Cho a,b,c là các số nguyên dương chứng tỏ rằng :
M = \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) ko phải là 1 số nguyên dương.
\(\frac{a}{b+c}>\frac{a}{a+b+c},\frac{b}{b+c}>\frac{b}{b+c+a},\frac{c}{c+a}>\frac{c}{c+a+b}\)
\(\Rightarrow A>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c},\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{b+a}{b+c+a},\frac{c}{a+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{c+a+b}\)
\(\Rightarrow A< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Vậy \(1< A< 2\Rightarrow A\)không phải là một số nguyên dương
Cho a,b,c là các số nguyên dương. Chứng tỏ rằng: a/(a+b) + b/(b+c) + c/(c+a) không phải là số nguyên.