Cho a=11....1( có 2017 chữ số 1), b=1000...5( có 2016 số 0). chứng minh a+b+1 là số chính phương
Cho :A=11.....11, có 2016 số hạng
B=11000....005, có 2017 số hạng
Chứng minh rằng : A x B+1 là số chính phương.
Mình đang học về chuyên đề số chính phương có vài câu hỏi khó nhờ các bạn giải giúp trước thứ Ba ngày 26/1/2016 cảm ơn các bạn nhiều lắm !!!
Câu 1: a) Chứng minh 11...122...25 là số chính phương (với n số 1 và n+1 số 2)
b) Cho B = 44...4 (100 số 4) = 4 x 11...1 (100 số 1) là số chính phương. Chứng minh 11...1 (100 số 1) là số chính phương
Câu 2: a) Cho các số A= 11.....11 (2m chữ số 1) ; B = 11...11 (m+1 số 1) ; C = 66...6 (m chữ số 6)
CMR: A+B+C+8 là số chính phương
b) CMR: Với mọi x,y thì A = (x+y)(x+2y)(x+3y)(x+4y) + y4 là số chính phương
Co ai giup minh ko chang le newbie ko dc giup sao
Bài2 Chứng minh ab+1 là số chính phương nếu
a, a=11...1 và b=100...05
n số 1 và n-1 số 0
b, a=11...12 và b=11...14
n số 1
Bài3 Cho a là số gồm 2n chữ số 1, b là số gồm n+1 chữ số 1, b là số gồm n chữ số 6. Chứng minh rằng a+b+c+8 là số chính phương
Bài4 Chứng minh số a=\(\frac{1}{3}\) (11...1-33...300...0) là lập phương của 1 số tự nhiên
( n chữ số 1, n chữ số 3, n chữ số 0)
Bài5 Cho 1 dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách chèn số 15 vào giữa số hạng liền trước:
Vd: 16 => 1156 => 111556 => 11115556 =>...
Chứng minh mọi số hạng của dãy đều là số chính phương
Bài 2 Chứng minh : A.B + 1 là số chính phương với
a/ A =11...1 và B =100...05 (có n chữ số 1 và n-1 chữ số 0)
Lời giải:
Thấy A = 1111 … 11 và B = 100…005
Nên: A + (8A + 6) = 1111…11+ 888…94 = 100…05 = B. Tức là 9A + 6 = B
Do đó: A.B + 1 = A.(9A + 6) + 1 = 9A2 + 6.A + 1 = (3A + 1)2
b/ A = 11...12 và B =11...14 (có n chữ số 1)
Lời giải: Thấy B = A + 2 Nên AB + 1 = A.(A + 2) +1 = (A+1)2
Bài 3 Cho A là số gồm 2n chữ số 1, B là số gồm n+1 chữ số 1, C là số gồm n chữ số 6.
Chứng minh rằng: (A + B + C + 8) là số chính phương
Lời giải: - Với n =1 Thì A = 11, B = 11, C = 6 Nên A + B + C + 8 = 36 = 62
- Với n = 2 Thì A = 1111, B = 111, C = 66 Nên A + B + C + 8 = 1296 = 362
- Với n = 3 Thì A = 111111, B = 1111, C = 666 Nên A + B + C + 8 = 112896 = 3362
- Trường hợp tổng quát, n>3
Đặt S = A + B + C + 8 = 111…12888…88 + 8 = 111… 12888…896.
Cộng dọc, viết ngay ngắn các bạn dễ thấy:
S Là số tự nhiên có 2n chữ số, gồm n-1 chữ số 1, một chữ số 2, có n-2 chữ số 8, một chữ số 9 và một chữ số 6
(Với n là số tự nhiên, n>2)
Ta có S = 111…12888…896 = 111…12888…87 + 9 = 333…33x333…39 + 9 =
= 333…33x(333…33 + 6) + 9 =
= 333…332 + 6x333…33 + 9 = (333…33 + 3)2 = 333…362
(Số 333…36 có n chữ số, gồm n-1 chữ số 3 và một chữ số 6 )
Bài 4 Chứng minh số \(\frac{1}{3}.\left(111...11-333...3300...00\right)\) là lập phương của 1 số tự nhiên
( n chữ số 1, n chữ số 3, n chữ số 0)
Lời giải : Số đã cho là một số âm nên nó không thể bằng lập phương của một số tự nhiên. (Bạn xem lại đề ra đi nhé)
Bài 5: Cho 1 dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách chèn số 15 vào giữa số hạng liền trước:
Vd: 16 => 1156 => 111556 => 11115556 =>...
Chứng minh mọi số hạng của dãy đều là số chính phương.
Bài 2 Chứng minh : A.B + 1 là số chính phương với
a/ A =11...1 và B =100...05 (có n chữ số 1 và n-1 chữ số 0)
Lời giải:
Thấy A = 1111 … 11 và B = 100…005
Nên: A + (8A + 6) = 1111…11+ 888…94 = 100…05 = B. Tức là 9A + 6 = B
Do đó: A.B + 1 = A.(9A + 6) + 1 = 9A2 + 6.A + 1 = (3A + 1)2
b/ A = 11...12 và B =11...14 (có n chữ số 1)
Lời giải: Thấy B = A + 2 Nên AB + 1 = A.(A + 2) +1 = (A+1)2
Bài 3 Cho A là số gồm 2n chữ số 1, B là số gồm n+1 chữ số 1, C là số gồm n chữ số 6.
Chứng minh rằng: (A + B + C + 8) là số chính phương
Lời giải: - Với n =1 Thì A = 11, B = 11, C = 6 Nên A + B + C + 8 = 36 = 62
- Với n = 2 Thì A = 1111, B = 111, C = 66 Nên A + B + C + 8 = 1296 = 362
- Với n = 3 Thì A = 111111, B = 1111, C = 666 Nên A + B + C + 8 = 112896 = 3362
- Trường hợp tổng quát, n>3
Đặt S = A + B + C + 8 = 111…12888…88 + 8 = 111… 12888…896.
Cộng dọc, viết ngay ngắn các bạn dễ thấy:
S Là số tự nhiên có 2n chữ số, gồm n-1 chữ số 1, một chữ số 2, n-2 chữ số 8, một chữ số 9 và một chữ số 6
(Với n là số tự nhiên, n>2)
Ta có S = 111…12888…896 = 111…12888…87 + 9 = 333…33x333…39 + 9 =
= 333…33x(333…33 + 6) + 9 =
= 333…332 + 6x333…33 + 9 = (333…33 + 3)2 = 333…362
(Số 333…36 có n chữ số, gồm n-1 chữ số 3 và một chữ số 6 )
Bài 4 Chứng minh số .(11...1-33...300...0) là lập phương của 1 số tự nhiên
( n chữ số 1, n chữ số 3, n chữ số 0)
Bài 5: Cho 1 dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách chèn số 15 vào giữa số hạng liền trước: Vd: 16 => 1156 => 111556 => 11115556 =>...
Chứng minh mọi số hạng của dãy đều là số chính phương
Lời giải: Ta có hai số hạng đầu của dãy số đó là :
16 = 15 + 1 = 3 . 5 + 1 = 3.(3 + 2) + 1 = 32 + 2.3 + 1 = (3 + 1)2
1156 = 1155 + 1 = 33x35 + 1 = 33x(33 + 2) + 1 = 332 + 2.33 + 1 = (33 + 1)2
Số hạng tổng quát (Có n chữ số 1, có n-1 chữ số 5 và 1 chữ số 6) 111…55…56 Ta biến đổi :
111…1155…56 = 111…1155…55 + 1 =
= 333…33x333…35 + 1 = 333…33x(333..33 + 2) + 1 =
= 333…332 + 2x333…33 + 1 = (333…33 + 1)2 = 333…342
(333…34 Có n-1 chữ số 3 và một chữ số 4)
Chú ý rằng: Tích (Mỗi thừa số có n chữ số. Thừa số thứ nhất có n – 1 chữ số 3 và một chữ số 5 ở hàng đơn vị, thừa số thứ hai có n chữ số 3): 333…35x 333…3 viết dạng nhân dọc :
333…335 (Có n-1 chữ số 3 và một chữ số 5)
x 333... 333
________________
100...005 Có n+1 chữ số, gồm một chữ số 1, một chữ số 5 và n-1 chữ số 0)
100… 005 ( Có n+1 chữ số, gồm một chữ số 1, một chữ số 5 và n-1 chữ số 0)
……………
100…005 (Có n+1 chữ số, gồm một chữ số 1, một chữ số 5 và n-1 chữ số 0)
_______________________
11…1155…555 (Có n chữ số 1 và n chữ số 5)
Chúc bạn Nguyễn Như Quỳ học tập ngày càng giỏi . Bạn tìm đâu ra những bài toán hay đến vậy ?
các em tự tin thể hiện những kiến thức mình đã tìm hiểu, biết nhận xét cái đúng, cái sai và nắm được kiến thức trọng tâm của bài học.
cho A là 1 số tự nhiên gồm 1000 chữ số trong đó có 999 chữ số 5 và 1 chữ số khác 5. Chứng minh A không là số chính phương.
1/ tìm số tự nhiên để các số sau là số chính phương
C = 2n+ 1 va D= 3n +1
2/ Tìm số chính phương có 4 chữ số gồm có 4 chữ số 0 ,2 ,3 ,5
3/ chứng minh rằng các số sau không phải là số chính phương
b, B =101000+112000 +163000
c,C =abab
d,D =abcabc
cho a=111...1(2017 chữ số 1)
b=100..05(2016 chữ số 0)
cminh ab+1 là 1 số chính phương
a=(10^2017-1)/9 b=10^2017+5
ab+1=(10^2017-1/9)(10^2017+5)+1
=(10^4034-10^2017)/9+(5.10^2017-5)/9+1
=10^4034/9-10^2017/9+5.10^2017/9-5/9+1
=10^4034/9+4.10^2017/9+4/9
=(10^2017/3+2/3)^2
=(10^2017+2/3)^2
Mk ghét nhất là bài chứng minh, haizzzzzzzzz
cho AB là 2 hợp số:A=11...11,B=44...44bieets A có 4022 chữ số 1 và B có 2011 chữ số 4.Chứng minh rằng A+B+1 là số chính phương
1. Chứng minh rằng tích ba số nguyên dương liên tiếp không là lập phương của một số tự nhiên
2. CMR: A=\(\frac{1}{3}\left(11...1-33...3\right)00...0\)là lập phương của một số ( n chữ số 1, n chữ số 3 và n chữ số 0)
3. a) Cho a= 11...1 ( n chữ số 1 ), b= 1 00...0 5 ( n-1 chữ số 0). CMR: ab+1 là số chính phương.
b) Cho một dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách viết chèn số 15 vào chính giữa số hạng liền trước.
16, 1156, 111556,...
3. a) Coi A = ab+1
A = 111...11(n chữ số 1) .10n + 5 .111...11(n chữ số 1) + 1
\(A= \frac {10^n - 1} {9} + 5 \frac { 10^n -1} {9}+1
\)
\(A= \frac {10^2n - 10^n + 5.10^n -5 + 9} {9}\)
\(A =\frac {10^{2n} + 4.10^n + 4} {9}\)
\(A =\frac {(10^n + 2)^2} {3^2}\)
\(A=(\frac{10^n+2} {3}) ^2\)
Vậy A là số chính phương (vì 10n+2 chia hết cho 3)
b)Ta thấy 16 = 1.15 + 1
1156 = 11.105 + 1
111556 = 111.1005 + 1
... 111...1555...56(n chữ số 1,n-1 chữ số 5) = 111...1(n chữ số 1).100...05(n-1 chữ số 0) +1 (phần a)
Vẫy các số hạng trong dãy trên đều là số chính phương
3a)(dấu * là nhân nhé)
Có ab+1
=11...1*100...05+1
=11...1*(33...35(n-1 chữ số 3)*3)+1
=33...3*33...35+1
=33...3*(33...34+1)+1
=33...3*33...34+(33...3+1)
=33...3*33...34+33...34(n-1 chữ số 3)
=33...34*(33...3+1)
=33...34*33...34(n-1 chữ số 3)
=(33...34)^2 là số chính phương
1 ,
chung minh rang :
( n-1 ) ^ 3 < ( n - 1 ) n ( n +1 ) = n (n ^ 2 -1 ) = n ^3 -n < n^3
( viet hoi tat tu hieu nhe )
Chứng minh C=11...1(1995 chữ số 1) . 1000...05(1994 chữ số 0) + 1 là số chính phương
\(C=\frac{999...9}{9}.\left(1000...0+5\right)+1\) (1995 chữ số 9 và 1995 chữ số 0)
\(C=\frac{1000...0-1}{9}.\left(1000...0+5\right)+1\) (1995 chữ số 0)
\(C=\frac{10^{1995}-1}{9}.\left(10^{1995}+5\right)+1\)
\(C=\frac{\left(10^{1995}\right)^2+4.10^{1995}-5}{9}+1=\left(\frac{10^{1995}}{3}\right)^2+2.\frac{10^{1995}}{3}.\frac{2}{3}-\frac{5}{9}+1\)
\(C=\left(\frac{10^{1995}}{3}\right)^2+2.\frac{10^{1995}}{3}.\frac{2}{3}+\left(\frac{2}{3}\right)^2=\left(\frac{10^{1995}}{3}+\frac{2}{3}\right)^2\) Là số chính phương