Bài 1. Chứng minh rằng với mọi x,y thuộc R thì
x.y +11+222+3333+.... thuộc z
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2 =0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| < |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)
2 = 0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
a ) Chứng minh rằng : A = x2 - 2x + 2 > 0 với mọi x thuộc R
b ) Chứng minh rằng x - x2 - 3 < 0 với mọi x thuộc R
a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)
b) \(x-x^2-3=-\left(x^2-x+3\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)
x²-2x+2=(x²-2x+1)+1=( x-1)²+1
Mà (x-1)²≥0 với mọi x
=> (x-1)²+1>0 với mọi x
=> x²-2x+2>0 với mọi x
Chứng minh rằng :
a , với mọi x ,y thuộc Z thì [x+y]=[x]+[y]
b,với x thuộc Z , y thuộc Q thì [x+y]=x+[y]
*chú ý : [y] là phần nguyên của y
Chứng minh rằng :
a , với mọi x ,y thuộc Z thì [x+y]=[x]+[y]
b,với x thuộc Z , y thuộc Q thì [x+y]=x+[y]
*chú ý : [y] là phần nguyên của y
\(a,\left|x+y\right|\ge0\)
\(\left|x\right|+\left|y\right|\ge0\)\(\Rightarrow\left|x+y\right|=\left|x\right|+\left|y\right|\)
a,
=> | x + y | = x + y hoặc (-x )+ (-y )
vì x , y thuộc Z => | x + y | = x + y (1)
|x| + |y| = x + y (2)
từ (1) và (2) => |x + y| = |x| + | y|
1 Chứng tỏ rằng:
a)(n^2+n) chia hết cho 2 (với mọi n thuộc z)
b) (n^2+n+3) ko chia hết cho 2(với mọi n thuộc z)
2)Cho x;y thuộc z .Chứng minh rằng (5x+47y) chia hết cho 17 khi và chỉ khi (x+6y) chia hết cho 17
Help Me!
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
\(n^2+n=n\left(n+1\right)\)
Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => đpcm
\(n^2+n+3=n\left(n+1\right)+3\)
Vì n(n+1) chia hết cho 2 => số cuối là số chẵn => n(n+1) + 3 có số cuối là số lẻ
Vậy n^2+n+3 ko chia hết cho 2
Chứng minh rằng: x2-2xy+y2+1>0
Với mọi x,y thuộc R
\(x^2-2xy+y^2+1=\left(x-y\right)^2+1\)
Mà \(\left(x-y\right)^2\ge0\)
\(\Rightarrow\left(x-y\right)^2+1>0\)
Vậy \(\left(x-y\right)^2+1>0\) với mọi \(x,y\in R\)
chứng minh rằng x^2-x+1>0 với mọi x thuộc R
x^2-x+1>0
<=>x2-2x.1/2+1/4+3/4>0
<=>(x-1/2)2+3/4 >0 ( luôn đúng với mọi x vì (x-1/2)2\(\ge\)0 với mọi x)
vậy x^2-x+1>0 với mọi x thuộc R
Mọi người giúp với
Tìm x
x^2+5x=0
Chứng minh x^2-2x+3>0 với mọi số thực x
Đường trung bình của một tam là đoạn thẳng nối 2 trung điểm hai cạnh của tam giác.Cho tam giác ABC có I là trung điểm của cạnh AB.Qua I kẻ đường thẳng a // với cạnh BC cắt AC tại K
a) Chứng minh IK là đường trung bình của tam giác ABC
b) Tính độ dài IK với BC=12cm
c) Qua K kẻ đường thẳng b // với AB cắt BC tại L . Chứng minh rằng tứ giác BLKL là hình bình hành
Cho tam giác ABC có A = 90độ , AC = 5cm , BC = 13cm . Gọi I là trung điểm của cạnh AB , D là điểm đối xứng với C qua I
a) Tứ giác ADBC là hình gì ? Vì sao?
b) Gọi M là trung điểm của cạnh BC . Chứng minh MI vuông góc AB
c) tính diện tích tam giác ABC
a, Tìm x;y thuộc Z sao cho 3xy+x+2y=0
b, Chứng minh rằng với mọi n thuộc N thì 10n+45n-1 chia hết cho 27
a) 3xy + x + 2y = 0
=> x.(3y + 1) = -2y
=> \(x=\frac{-2y}{3y+1}\)
Mà x nguyên => -2y chia hết cho 3y + 1
=> 2y chia hết cho 3y + 1
=> 6y chia hết cho 3y + 1
=> 6y + 2 - 2 chia hết cho 3y + 1
=> 2.(3y + 1) - 2 chia hết cho 3y + 1
Do 2.(3y + 1) chia hết cho 3y + 1 => 2 chia hết cho 3y + 1
=> \(3y+1\in\left\{1;-1;2;-2\right\}\)
Mà 3y + 1 chia 3 dư 1 => 3y + 1 \(\in\left\{1;-2\right\}\)
+ Với 3y + 1 = 1 thì 3y = 0 => y = 0
=> \(x=\frac{-2.0}{3.0+1}=\frac{0}{1}=0\)
+ Với 3y + 1 = -2 thì 3y = -3 => y = -1
=> \(x=\frac{-2.\left(-1\right)}{3.\left(-1\right)+1}=\frac{2}{-3+1}=\frac{2}{-2}=-1\)
Vậy các cặp giá trị (x;y) thỏa mãn đề bài là: (0;0) ; (-1;-1)
b) Ta có:
10n + 45n - 1
= 10n - 1 - 9n + 54n
= 999...9 - 9n + 54n
(n c/s 9)
= 9.(111...1 - n) + 54n
(n c/s 1)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 mà tổng các chữ số 111...1 là n
(n c/s 1)
=> 111...1 - n chia hết cho 3
(n c/s 1)
=> 9.(111...1 - n) chia hết cho 27; 54n chia hết cho 27
(n c/s 1)
=> 10n + 45n - 1 chia hết cho 27 (đpcm)