Những câu hỏi liên quan
HN
Xem chi tiết
TC
25 tháng 8 2017 lúc 9:05

Từ \(3x^2y=y^2+2\left(4\right)\)\(\Rightarrow y^2=3x^2y-2\left(1\right)\)

     \(3xy^2=x^2+2\left(2\right)\Rightarrow x^2=3xy^2-2\left(3\right)\)

Lấy (1) thay vào (2) ta đc:

   \(3x.\left(3x^2y-2\right)=x^2+2\)

   \(\Leftrightarrow9x^3y-6x-x^2-2=0\)

Lấy (3) thay vào (4) ta đc:

    \(3y\left(3xy^2-2\right)=y^2+2\)

     \(\Leftrightarrow9xy^3-6y-y^2-2=0\)

              Đến đây sao khó hiểu thật

         

Bình luận (0)
H24
25 tháng 8 2017 lúc 9:58

cái này hơi bị rối nảo ak nha :)

Bình luận (0)
MM
Xem chi tiết
H24
5 tháng 11 2017 lúc 13:36

\(\frac{x}{5}=\frac{y}{3}\)và x2-y2=4(x,y>0)

\(\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\Rightarrow\frac{x^2}{25}=\frac{1}{4}\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\frac{5}{2}\)

\(\Rightarrow\frac{y^2}{9}=\frac{1}{4}\Rightarrow y^2=\frac{9}{4}\Rightarrow y=\frac{3}{2}\)

Vậy x =\(\frac{5}{2}\)và y =\(\frac{3}{2}\)

Bình luận (0)
H24
5 tháng 11 2017 lúc 13:30

Ta có:

\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{3}=\frac{y^2}{5}\)

Áp dụng dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{3^2}=\frac{y^2}{5^2}=\frac{x^2-y^2}{3^2-5^2}=\frac{-4}{-16}=\frac{1}{4}\)

\(\Rightarrow\frac{x^2}{3^2}=\frac{1}{4}\Rightarrow x=\sqrt{3^2.\frac{1}{4}}=\frac{3}{2}\)

\(\frac{y^2}{5^2}=\frac{1}{4}\Rightarrow y=\sqrt{5^2.\frac{1}{4}}=\frac{5}{2}\)

Bình luận (0)
NM
Xem chi tiết
H24
24 tháng 8 2017 lúc 21:15

 ta có: a+b+c=1 

<=>(a+b+c)^2=1 

<=>ab+bc+ca=0 (1) 

mặt khác: áp dụng tính chất dãy tỉ số bằng nhau ta có: 

x/a=y/b=z/c=(x+y+z)/(a+b+c)=x+y+z 

<=> x=a(x+y+z) ; y=b(x+y+z) ; z=c(x+y+z) 

=>xy+yz+zx=ab(x+y+z)^2+bc(x+y+z)^2+ca(x... 

<=>xy+yz+zx=(ab+bc+ca)(x+y+z)^2 (2) 

từ (1) và (2) ta có đpcm 

Bình luận (0)
HH
Xem chi tiết
LH
2 tháng 9 2016 lúc 21:55

x= -41/40 ; y= 41/40, nếu bạn cần kết quả luôn thì mình cái link lên đó mà tính nhé http://www.wolframalpha.com/

Bình luận (0)
TA
Xem chi tiết
PA
15 tháng 5 2016 lúc 14:48

Ta Có :

6=2.3=6.1=(-6).(-1)=3.2=1.6=(-1).(-6)

Thay|x-1|=2 và (y+2)=3

=> |x-1|=2 

=> x-1=2

Hoặc x-1 = -2

=> x= 3

Hoặc x = -1

... tự làm tiếp

Bình luận (0)
OO
15 tháng 5 2016 lúc 15:21

KO BIẾT .

Bình luận (0)
NT
29 tháng 5 2016 lúc 10:45

Ta Có :

6=2.3=6.1=(-6).(-1)=3.2=1.6=(-1).(-6)

Thay|x-1|=2 và (y+2)=3

=> |x-1|=2 

=> x-1=2

Hoặc x-1 = -2

=> x= 3

Hoặc x = -1

... tự làm tiếp

Bình luận (0)
DB
Xem chi tiết
DH
24 tháng 6 2018 lúc 15:50

giả sử các số đó là x;y với x>1 ; y>1 và không làm giảm tính tổng quát, ta có thể đặt: \(x\le y\)

Theo đề bài, ta có: \(\left(x+1\right)⋮y\) và \(\left(y+1\right)⋮x\)

Do vậy: \(\left[\left(x+1\right)\left(y+1\right)\right]⋮xy\)

\(\left(xy+x+y+1\right)⋮xy\Rightarrow\left(x+y+1\right)⋮xy\)

Hay x+y+1 = p.xy với p thuộc N

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=p\)

Vì \(x\ge1;y\ge1\) Nên rõ ràng là: \(0< \frac{1}{x}+\frac{1}{y}+\frac{1}{xy}\le1+1+1=3\)

Vậy p chỉ có thể nhận một trong các giá trị 1;2;3

- Với p = 3 thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=3\Rightarrow\left(1;1\right)\)

- Với p = 2 thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=2\) => Phương trình vô nghiệm

- Với  p =1 thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1\Rightarrow\left(2;3\right)\)

Vậy có 3 cặp số thỏa mãn yêu cầu: (1;1) ; (2;3) ; (3;2)

P/s: Không chắc lắm. Nếu còn nhiều sai sót, mong các anh/chị, thầy cô sửa cho em

Bình luận (0)
DB
24 tháng 6 2018 lúc 15:52

Trời đất, bạn MMS giỏi ghê. Thế mà mình nghĩ mãi không ra. Cảm ơn bạn nhiều

Bình luận (0)
KN
24 tháng 6 2018 lúc 15:56

Giả sử $y \leq x$. Ta có x+1 chia hết cho y nên x+1 > y hay x+1>y  (do y =<x)

Mặt  khác y+1 chia hết cho x nên y+1 $\geq$ x hay y >=x-1. => x+1 >y>=x-1

Xét y=x. Khi đó ta có x+1 chia hết cho x nên x=y=1 hoặc x=y=0 (nếu x>1 thì x và x+1 sẽ nguyên tố cùng nhau và x+1 không chia hết cho x)

Xét y=x-1 ta có x+1 chia hết cho x-1 => (x+1-x-1) chia hết cho x-1 tức 2 chia hết cho x-1 => x-1=1 hay x-1=-1 hoặc x-1=2

=> x=2 hay x=0(loại do lúc này y=-1 tức y+1=0) hay x=3

=> Các cặp (x,y) trong TH này là (2;1); (3;2)

Vậy các cặp (x,y) cần tìm là (2;1), (3;2), (0;0), (1;1)

Bình luận (0)
Xem chi tiết
PT
Xem chi tiết
NV
Xem chi tiết
KN
22 tháng 1 2019 lúc 18:13

\(\left(x-3\right)\left(x-12\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}\)

\(\Rightarrow x\in\left\{3;12\right\}\)

\(\left(x^2-81\right)\left(x^2+9\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-81=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x\in\varnothing\end{cases}}\Leftrightarrow x=9\)

\(\Rightarrow x=9\)

\(\left(x-4\right)\left(x+2\right)< 0\)

\(\Rightarrow\hept{\begin{cases}x-4\\x+2\end{cases}}\)trái dấu

\(TH1:\hept{\begin{cases}x-4>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)

\(TH2:\hept{\begin{cases}x-4< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)

Vậy \(x\in\left\{-1;0;1;2;3\right\}\)

Bình luận (0)