Những câu hỏi liên quan
NT
Xem chi tiết
HB
Xem chi tiết
H24
Xem chi tiết
HT
15 tháng 4 2016 lúc 20:31

A = \(\frac{2013}{2014}+\frac{2014}{2015}>\frac{1}{2}+\frac{1}{2}=1\)

\(B=\frac{2013+2014+2015}{2014+2015+2016}<1\)

\(Vậy:A>B\)

Đúng nha Nguyễn Bình Minh

Bình luận (0)
KM
5 tháng 6 2016 lúc 15:03

so sánh:

\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\)  và\(B=\) \(\frac{2013+2014+2015}{2014+2015+2016}\)

                                                             \(B=\frac{2013}{2014+2015+2016}+\frac{2014}{2014+2015+2016}+\frac{2015}{2014+2015+2016}\)

Ta có: \(\frac{2013}{2014}>\frac{2013}{2014+2015+2016}\)

          \(\frac{2014}{2015}>\frac{2014}{2014+2015+2016}\)

          \(\frac{2015}{2016}>\frac{2015}{2014+2015+2016}\)

\(\Rightarrow\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}>\frac{2013+2014+2015}{2014+2015+2016}\)

Vậy: \(A>B\)

Bình luận (0)
LS
Xem chi tiết
KM
4 tháng 5 2016 lúc 19:22

so sánh: \(A=\frac{2014}{2015}+\frac{2015}{2016}\)  và \(B=\frac{2014+2015}{2015+2016}\)

                                               \(\Rightarrow B=\frac{2014}{2015+2016}+\frac{2015}{2015+2016}\)

Ta có: \(\frac{2014}{2015}>\frac{2014}{2015+2016}\)\(2015<2015+2016\)

          \(\frac{2015}{2016}>\frac{2015}{2015+2016}\)\(2016<2015+2016\)

\(\Rightarrow\frac{2014}{2015}+\frac{2015}{2016}>\frac{2014}{2015+2016}+\frac{2015}{2015+2016}\)

\(\Rightarrow\frac{2014}{2015}+\frac{2015}{2016}>\frac{2014+2015}{2015+2016}\)

Vậy:     \(A>B\)

Bình luận (0)
TT
Xem chi tiết
DW
Xem chi tiết
PA
1 tháng 9 2016 lúc 12:09

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

Bình luận (0)
VA
Xem chi tiết
LL
Xem chi tiết
PH
15 tháng 7 2016 lúc 22:53

(2016/2017) = (2017/2016)

Bình luận (0)
NM
Xem chi tiết
NK
26 tháng 9 2016 lúc 19:53

Ta có:

\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)

\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)

\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)

Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)

Bình luận (0)
CH
23 tháng 9 2016 lúc 14:23

1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)

\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)

\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)

\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)

\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)

\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)

Mà \(2015^{2014}< 2013.2016^{2014}.2015\)

nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Vậy \(2015^{2016}>2016^{2015}.\)

Bình luận (0)