Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NN
Xem chi tiết
H24
4 tháng 8 2023 lúc 21:18

Gọi \(\text{ƯCLN( n+8 ; 2n+5 )}\) \(=d\left(d\in\text{N*}\right)\)

\(\Rightarrow\) \(\left\{{}\begin{matrix}\text{n + 8 ⋮ d}\\\text{2n - 5 ⋮ d}\end{matrix}\right.\)

\(\Rightarrow\) \(\left\{{}\begin{matrix}\text{2n + 16 ⋮ d}\\\text{2n - 5 ⋮ d}\end{matrix}\right.\)

\(\Rightarrow\) \(\text{2n + 16 – (2n-5) ⋮ d}\)

\(\Rightarrow\text{21 ⋮ d }\)

\(\Rightarrow\) \(\text{d }\in\left\{\text{1 ; 3 ; 7}\right\}\)

Nếu \(\text{d = 3}\)

\(\Rightarrow\) \(\text{n+8 ⋮ 3}\)

\(\Rightarrow\) \(\text{n + 8 = 3k ( k ∈ N*)}\)

\(\Rightarrow\) \(\text{n = 3k – 8}\)

\(\Rightarrow\) \(\text{2n – 5 = 2(3k – 8) – 5 = 6k – 16 – 5 = 6k – 21 = 3(2k – 7) ⋮ 3}\)

Vậy n khác \(\text{2k – 7}\) thì \(\text{n+8/2n -5}\) tối giản

 

 

Bình luận (0)
NN
4 tháng 8 2023 lúc 21:05

cứu mình với ;-;

Bình luận (0)
NC
Xem chi tiết
LH
Xem chi tiết
FT
28 tháng 4 2016 lúc 14:04

Gọi \(ƯCLN\)(n+8 và 2n-5) là d 

\(\Rightarrow\int^{n+8}_{2n-5}\) chia hết cho d

\(\Rightarrow\int^{2\left(n+8\right)}_{1\left(2n-5\right)}\) chia hết cho d

\(\Rightarrow\int^{2n+16}_{2n-5}\) chia hết cho d

\(\Rightarrow2n+16-\left(2n-5\right)\)chia hết cho d

\(\Rightarrow2n+16-2n+5\) chia hết cho d

\(\Rightarrow11\) chai hết cho d \(\in\) \(ƯCLN\)\(\left(11\right)=\left\{+-11,+-1\right\}\)

Rồi bạn lập bảng tính như thường, chúc bạn học tốt! 

Bình luận (0)
LH
28 tháng 4 2016 lúc 15:27

cám ơn bạn nhé 

Bình luận (0)
H24
Xem chi tiết
PN
28 tháng 4 2016 lúc 21:42

cái này chỉ có thể dùng phép thử rồi tính ra n=1

Bình luận (0)
H24
29 tháng 4 2016 lúc 8:59

nếu n=1 thì n+8=9 và 2.n-5=-3 => phân số này không tối giản (loại)

nếu n=2 thì n+8=10 và 2.n-5=-1 = phân số này không tối giản (loại)

nếu n=3 thì n+8=11 và 2.n-5=1 = phân số này không tối giản (loại)

.................. cứ thử như vậy

mà hình như không có số nào hết đó (hên sui !!!)

Bình luận (0)
LT
Xem chi tiết
CC
Xem chi tiết
NU
14 tháng 4 2020 lúc 14:31

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

Bình luận (0)
 Khách vãng lai đã xóa
NT
14 tháng 4 2020 lúc 14:50

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

Bình luận (0)
 Khách vãng lai đã xóa
CC
15 tháng 4 2020 lúc 13:45

các bn giải hộ mk bài 2 ik

thật sự mk đang rất cần nó!!!

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TD
1 tháng 5 2016 lúc 11:52

n=0 chắc chắn đó nha

Bình luận (0)
H24
Xem chi tiết
VM
Xem chi tiết
VL
12 tháng 5 2021 lúc 20:05

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

Bình luận (0)
 Khách vãng lai đã xóa