cho a+b+c=2016 va 1/(a+b)+1/(b+c)+1/(c+a)=1/90 tinh S=a/(b+c)+b/(c+a)+c/(a+b)
Cho a+b + c
Va 1/a+b +1/b+c + 1/ c+a = 1/90
Tinh S= a/b+c + b/c+a + c/a+b
a+b+c bằng mấy
Cho a+b+c=2016 và 1/a+b + 1/b+c +1/c+a=1/90
Tính S=a/b+c + b/a+c + c/b+a
Cho a+b+c=2010 va 1/(a+b)+1/(b+c)+1/(c+a)=1/3
Tinh S=a/(b+c)+b/(c+a)+c/a+b
\(S+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(=2010.\frac{1}{3}=670\)
\(\Rightarrow S=670-3=667\)
Cho 1/a+b+1/b+c+1/c+d=1/90
tinh S= a/b+c + b/c+a + c/a+b
Cho \(a+b+c=2016\) và \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{90}\). Tính \(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(a+b+c=2016\Rightarrow\left\{{}\begin{matrix}a=2016-\left(b+c\right)\\b=2016-\left(c+a\right)\\c=2016-\left(a+b\right)\end{matrix}\right.\)
\(\Rightarrow S=\dfrac{2016-\left(b+c\right)}{b+c}+\dfrac{2016-\left(c+a\right)}{c+a}+\dfrac{2016-\left(a+b\right)}{a+b}\)\(\Rightarrow S=2016\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)
\(\Rightarrow S=2016.\dfrac{1}{90}-3\)
\(\Rightarrow S=\dfrac{97}{2}\)
Cho a+b+c=2016 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}\)
Tính \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
cho a,b,c khac 0 va a+b-c/c =b+c-a/a=c+a-b/b tinh p=(1+b/a)(1+c/b)(1+a/c)
Ta có \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
=> \(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
=> \(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
Nếu a + b + c = 0
=> a + b = -c
b + c = -a
a + c = -b
Khi đó P = \(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{a+b}{a}.\frac{b+c}{b}.\frac{a+c}{c}=\frac{-c}{a}.\frac{-a}{b}.\frac{-b}{c}=\frac{-abc}{abc}=-1\)
Nếu a + b + c \(\ne\)0
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
=> a = b = c
Khi đó P \(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)
Vậy khi a + b + c = 0 thì P = -1
khi a + b + c \(\ne\)0 thì P = 8
cho a,b,c # doi 1 va a+b/c=b+c/a=c+a/b. tinh
M=(1+ a/b)(1+ b/c)(1+ c/a)
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\) (cộng 3 vế với 1)
TH1: \(a+b+c=0\)
Khi đó: \(M=\left(\frac{a+b}{b}\right)\left(\frac{b+c}{c}\right)\left(\frac{c+a}{a}\right)=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=-1\)
TH2: \(a=b=c\) (ko thỏa mãn a,b,c đôi 1 khác nhau)
Vây M = -1
Chúc bạn học tốt.
ta có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=\frac{2.\left(a+b+c\right)}{a+b+c}.\)
Nếu \(a+b+c\ne0\)thì \(\frac{2.\left(a+b+c\right)}{a+b+c}=2\)
=> a + b = 2c
b+c = 2a
=> a-c = 2.(c-a)
=> c=a ( trái với đề bài)
=> a + b +c = 0
\(\Rightarrow M=\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{c+b}{c}\cdot\frac{a+c}{a}=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{c}=-1\)
cho a+b+c =14 va (1/a+b)+(1/b+c)+(1/a+b)=1/7
hay tinh (a/b+c)+(b/a+c)+(c/a+b)