cho x,y dương thoã x+y=3,chứng minh x^2y<=4
a)Cho x và y là hai số thực thoã mãn 3x-=1 chứng minh rằng : 5^2-^2<5/4
b)Cho x khác y ; x khác -y;y khác 0 thoã mãn y/x+y + 2y^2/x^2+y^2 + 4y^4/x^4+y^4 + 8y^8/x^8-y^8=2021 tính giá trị x/y
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết đề như trên khó theo dõi quá.
cho x,y,z là ba số dương thoã mãn x+y+z=3. Chứng minh 2(x2+y2+z2)+xyz>=7
Cho hai số thực dương x và y thoã mãn điều kiện x+y=1. Chứng minh rằng \(\frac{2}{xy}+\frac{3}{x^2+y^2}\ge14\)
Chỉ cần áp dụng một vài BĐT thôi :)
Có: \(x^2+y^2\ge2xy\)
\(\left(x+y\right)^2\ge2\left(x^2+y^2\right)\)
\(\Leftrightarrow\frac{1}{2}\ge x^2+y^2\)
Áp dụng các BĐT trên vào CM Bđt cần Cm:
\(\frac{2}{xy}+\frac{3}{x^2+y^2}\ge\frac{2}{\frac{x^2+y^2}{2}}+\frac{3}{x^2+y^2}=\frac{4}{x^2+y^2}+\frac{3}{x^2+y^2}=\frac{7}{x^2+y^2}\ge\frac{7}{\frac{1}{2}}=14\)
Vậy ... đpcm
Ta có: \(\left(2x+3y\right)^2< \left(2x+3y\right)^2+5x+5y+1< \left(2x+3y+2\right)^2\).
Do đó để \(\left(2x+3y\right)^2+5x+5y+1\) là số chính phương thì \(\left(2x+3y\right)^2+5x+5y+1=\left(2x+3y+1\right)^2\Leftrightarrow x=y\).
Vậy x = y
Cho x,y,z thoã mãn (z-1)x-y=1 và x+2y=2
Chứng minh rằng \(\left(2x-y\right)\left(z^2-z+1\right)\)=7 tìm tất cả các số nguyên thoã mãn phương trình trên
Cho x, y,z thoã mãn x+y+z+1=4xyz. Chứng minh 1/x+1/y+1/z >=3.
oh. đễ mà
nhưng em học lop 8
để khi nào em lên lớp 9 em giải cho :D
Cho hai số x,y( y<x<0) thoã mãn x/y=3/5, x^2y^2=225
Cho x, y, z là 3 số dương phân biệt biết x - y/z = 3.y/x = x/y. Chứng minh rằng x = 2y ; y = 2z
Cho x, y, z là 3 số dương phân biệt biết x - y/2 = 3.y/x = x/y. Chứng minh rằng x = 2y ; y = 22