so sánh 1+5+5^2+..+5^9/1+5+5^2+5^3+...+5^8 với 1+3+3^2+..+3^9/1+3+3^2+3^3+...+3^8
So sánh : A=1+5+5^2+5^3+...+5^9/1+5+5^2+...+5^8
B=1+3+3^2+....+3^9/1+3+3^2+3^8
GIÚP MÌNH VỚI !!!!
XIN LỖI Ơ PHẦN B=1+3+3^2+...+3^8
Bạn đợi mình tí nha ! Mình đang giải !
Bài giải
\(A=\frac{1+5+5^2+5^3+...+5^9}{1+5+5^2+...+5^8}=1+\frac{5^9}{1+5+5^2+...+5^8}\)
Đặt \(C=1+5+5^2+..+5^8\)
\(5C=5+5^2+5^3+...+5^9\)
\(5C-C=4C=5^9-1\)
\(C=\frac{5^9-1}{4}\)
Thay vào ta được : \(A=\frac{5^9}{\frac{5^9-1}{4}}=1+\frac{5^9}{4\cdot5^9-4}=1+\frac{5^9}{4\left(5^9-1\right)}=1+\frac{5^9-1}{4\left(5^9-1\right)}+\frac{1}{4\left(5^9-1\right)}\)
\(=1+\frac{1}{4}+\frac{1}{4\left(5^9-1\right)}=\frac{5}{4}+\frac{1}{4\left(5^9-1\right)}\)
\(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}=1+\frac{3^9}{1+3+3^2+...+3^8}\)
Đặt \(D=1+3+3^2+...+3^8\)
\(3D=3+3^2+3^3+...+3^9\)
\(3D-D=2D=3^9-1\)
\(D=\frac{3^9-1}{2}\)
Thay vào ta được : \(B=1+\frac{3^9}{\frac{3^9-1}{2}}=1+\frac{3^9}{2\cdot3^9-2}=1+\frac{3^9}{2\left(3^9-1\right)}=1+\frac{3^9-1}{2\left(3^9-1\right)}+\frac{1}{2\left(3^9-1\right)}\)
\(=1+\frac{1}{2}+\frac{1}{2\left(3^9-1\right)}=\frac{3}{2}+\frac{1}{2\left(3^9-1\right)}\)
Vì \(\frac{5}{4}< \frac{3}{2}\) và \(\frac{1}{4\left(5^9-1\right)}< \frac{1}{2\left(3^9-1\right)}\) \(\Rightarrow\text{ }A< B\)
so sánh 2 biểu thức sau:
A= ( 1+ 3 + 3^2 +...+ 3^9) / (1+ 3 + 3^2 +...+ 3^8)
B= (1 +5 + 5^2 +...+ 5^9) /(1 + 5 + 5^2 +...+ 5^8)
So sánh C=1+5+5 mũ 2+.......+5 mũ 9 /1+5+5 mũ 2 +....+5 mũ 8 và D=1+3+3 mũ 2 +.....+3 mũ 9 / 1+3+3 mũ 2 +...+3 mũ 8
So sánh C=1+5+5 mũ 2+.......+5 mũ 9 /1+5+5 mũ 2 +....+5 mũ 8 và D=1+3+3 mũ 2 +.....+3 mũ 9 / 1+3+3 mũ 2 +...+3 mũ 8
Cho a=1+5+5^2+...+5^9/1+5+5^2+...+5^9
B=1+3+3^2+....+3^9/1+3+3^2+....+3^8
So sánh A và B
ta có: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^9}=1\)
mà \(1+3+3^2+...+3^9>1+3+3^2+...+3^8\)
\(\Rightarrow B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}>1\)
\(\Rightarrow A< B\)
Câu hỏi của nguyen van nam - Toán lớp 6 - Học toán với OnlineMath
\(A=\frac{1-5+5^2-5^3+....-5^9}{1-5+5^2-5^3+....+5^8};B=\frac{1-3+3^2-3^3+....-3^9}{1-3+3^2-3^3+...+3^8}.\)Hãy so sánh A và B
A = 1+ 5+ 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + 5^7 + 5^8 + 5^9
1 + 5 + 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + 5^7 + 5^8
B = 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + 3^7 + 3^8 + 3^9
1 + 3 + 3^2 + 3^3 + 3^4 + 3^5+ 3^6 +3^7 + 3^8
So sánh A; B
So sánh:
\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\)và \(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+....+3^8}\)
Ta có: \(5\left(1+5+5^2+...+5^9\right)-\left(1+5+5^2+...+5^9\right)\)
= \(\left(5+5^2+5^3+...+5^{10}\right)-\left(1+5+5^2+...+5^9\right)\)
\(4\left(1+5+5^2+...+5^9\right)\)\(=5^{10}-1\)
=> \(1+5+5^2+...+5^9=\frac{5^{10}-1}{4}\)
Tương tự: \(1+5+5^2+....+5^8=\frac{5^9-1}{4}\)
=> \(A=\frac{\frac{5^{10}-1}{4}}{\frac{5^9-1}{4}}=\frac{5^{10}-1}{5^9-1}=\frac{5\left(5^9-1\right)+4}{5^9-1}=5+\frac{4}{5^9-1}>5\)
Tương tự:
\(1+3+3^2+...+3^9=\frac{3^{10}-1}{2}\)
và \(1+3+3^2+...+3^8=\frac{3^9-1}{2}\)
=>\(B=\frac{3^{10}-1}{3^9-1}=\frac{3\left(3^9-1\right)+2}{3^9-1}=3+\frac{2}{3^9-1}< 5\)
=> A > 5 > B
A= \(\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\)
= \(\frac{1}{1+5+5^2+...+5^8}+\frac{5\left(1+5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}\)
mà \(\frac{1}{1+5+5^2+...+5^8}\approx0\)
suy ra: A= 5.
chứng minh tương tự, ta có: B=3
5 > 3 --> A>B
1) a) Chứng minh :A < B biết
A = 1+5^1+5^2+...+5^9 /1+5^1+5^2+...+5^8
B = 1+ 3^1+3^2+...+3^9 / 1+3^1+3^2+...+3^8
b) So sánh : (1/243)^9 Và (1/83)^13