Những câu hỏi liên quan
NH
Xem chi tiết
MA
19 tháng 4 2016 lúc 21:16

ta có

A = \(1+\frac{1+2}{2}+\frac{1+2+3}{3}+\frac{1+2+3+4}{4}+......+\frac{1+2+3+\text{4 +....+16}}{16}\)

xét tổng S = 1+2+3+4+5+......+n  = \(\frac{\left(n+1\right)n}{2}\) lấy \(\frac{S}{n}=\frac{\frac{\left(n+1\right)n}{2}}{n}=\frac{n+1}{2}\)

ta có

A=\(1+\frac{\frac{2\left(2+1\right)}{2}}{2}+\frac{\frac{3\left(3+1\right)}{2}}{3}+\frac{\frac{4\left(4+1\right)}{2}}{4}+\frac{\frac{5\left(5+1\right)}{2}}{5}+......+\frac{\frac{16\left(16+1\right)}{2}}{16}\)

A = \(1+\frac{1+2}{2}+\frac{1+3}{2}+\frac{1+4}{2}+\frac{1+5}{2}+......+\frac{1+16}{2}\)

A = \(1+\frac{1+2+1+3+1+\text{4+1+5+1+6+.....+1+16}}{2}\)

A = \(1+\frac{151}{2}\)

A = \(\frac{153}{2}\)

Bình luận (0)
RN
28 tháng 3 2017 lúc 10:44

bằng 76 mới đúng

Bình luận (0)
TK
Xem chi tiết
NT
7 tháng 5 2015 lúc 9:51

A=1+1/2x3+1/3X6+1/4X10+...+1/16X136

A=1+3/2+2+5/2+3+...+17/2

A=2/2+3/2+4/2+5/2+6/2+...+17/2

A=2+3+4+5+...+16+17/2

A=(2+17)x16:2/2

A=19x16:2/2

A=304:2/2

A=152/2

A=76

****

Bình luận (0)
BH
Xem chi tiết
HL
Xem chi tiết
H24
11 tháng 3 2018 lúc 9:26

chứng minh rằng B là số nguyên khi A là phân số

Bình luận (0)
TN
Xem chi tiết
TN
Xem chi tiết
KI
Xem chi tiết
H24
10 tháng 10 2020 lúc 21:36

TUI ĐANG GẤP CHO TÔI HỎI BÀI NÀY LỚP 2 NHA\\\\

AN CÓ 180 CÁI KẸO.BÌNH CÓ 160. HỎI BÌNH CÓ MẤY CÁI KẸO

Bình luận (0)
 Khách vãng lai đã xóa
ND
10 tháng 10 2020 lúc 21:37

a) Ta có: \(2.4.\left(3^2+1\right)\left(3^4+1\right)...\left(3^{16}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{16}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=3^{32}-1\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
10 tháng 10 2020 lúc 21:39

b) \(2.\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\)

\(=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{16}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{16}+1\right)\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=3^{32}-1\)

Bình luận (0)
 Khách vãng lai đã xóa
JJ
Xem chi tiết
PQ
6 tháng 4 2018 lúc 10:59

Ta có : 

\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+4+...+16\right)\)

\(=\)\(1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+\frac{1}{4}.\frac{4\left(4+1\right)}{2}+...+\frac{1}{16}.\frac{16\left(16+1\right)}{2}\)

\(=\)\(1+\frac{2+1}{2}+\frac{3+1}{2}+\frac{4+1}{2}+...+\frac{16+1}{2}\)

\(=\)\(\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{17}{2}\)

\(=\)\(\frac{2+3+4+5+...+17}{2}\)

\(=\)\(\frac{\frac{16\left(17+2\right)}{2}}{2}\)

\(=\)\(\frac{152}{2}\)

\(=\)\(76\)

Bài này áp dụng công thức \(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\) nhé 

Chúc bạn học tốt ~ 

Bình luận (0)
CL
Xem chi tiết