So sánh: \(A=\frac{2014^{10}+2}{2014^{11}+2}\)và\(B=\frac{2014^{11}+2}{2014^{12}+2}\)
So sánh \(A=\frac{2014^{10}+2}{2014^{11}+2}\) và \(B=\frac{2014^{11}+2}{2014^{12}+2}\)
Ai giải đc bài này nhanh nhất mik sẽ TICK cho!!!!NHanh ln nka các pn mjk đang cần gấp
Vì \(B=\frac{2014^{11}+2}{2014^{12}+2}<1\)
\(\Rightarrow B=\frac{2014^{11}+2}{2014^{12}+2}<\frac{2014^{11}+2+4026}{2014^{12}+2+4026}=\frac{2014^{11}+4028}{2014^{12}+4028}=\frac{2014.\left(2014^{10}+2\right)}{2014\left(2014^{11}+2\right)}=\frac{2014^{10}+2}{2014^{11}+2}=A\)
Vậy B<A hay A<B
ta chứng minh bài toán phụ:
nếu ta có b<d \(\frac{a}{b}\)>\(\frac{c}{d}\) thì ad>bc
dễ thây \(\frac{ad}{bd}>\frac{cb}{bd}\)
=> ad>bd
áp dụng:
dat 2014=a ta co
\(A=\frac{a^{10}+2}{a^{11+2}}\)
\(B=\frac{a^{11}+2}{a^{12}+2}\)
ta có
\(A=\frac{a^{10}+2.a^{12}+2}{a^{11}+2.a^{12}+2}\)
\(B=\frac{a^{11}+2.a^{11}+2}{a^{12}+2.a^{11}+2}\)=\(\frac{a^{10}+2a^{12}+2}{a^{12}+2a^{11}+2}\)
=> A=B
mk hok chắc đâu nha
a, Cho A=\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{99}+\frac{1}{100}\) . So Sánh A với 1
b, B=\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\). So sánh B với \(\frac{1}{2}\)
c, cho M=\(\frac{2013}{2014}+\frac{2014}{2015}\)và N=\(\frac{2013+2014}{2014+2015}\). So sánh M và N
Câu a, p/s cuối cùng là \(\frac{1}{100}\)nha mí bn
a) Ta có :
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}\)
\(>\frac{1}{10}+\frac{1}{100}.90=\frac{1}{10}+\frac{90}{100}=1\)
vậy A > 1
b) \(B=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)
\(>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{1}{20}.10=\frac{1}{2}\)
Vậy B > \(\frac{1}{2}\)
So sánh :
a,\(\frac{7}{23}v\text{à}\frac{11}{28}\)
b,\(\frac{2014}{2015}+\frac{2015}{2016}v\text{à}\frac{2014+2015}{2015+2016}\)
c,A=\(\frac{2^{10}+1}{2^{11}+1}v\text{à B=\frac{2^{11}+1}{2^{12}+1}}\)
a)7/23<11/28
b)2014/2015+2015/2016>2014+2015/2015+2016
c) A= gì vậy
A=\(\frac{2014^{2014}+2}{2014^{2014}-1}\)và B=\(\frac{2014^{2014}}{2014^{2014}-3}\)so sánh A và B
So sánh A và B, Cbiết
A=201410+1 / 201411+1
B=201411+1/ 201412+1
C=201412+1 / 201413+1
cùng nhân tử với 2014>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
So sánh
\(A=\frac{2014^{2013}+1}{2014^{2013}-13}\)\(B=\frac{2014^{2012}+8}{2014^{2012}-11}\)
\(\frac{2014^{2013}+1}{2014^{2013}-13}\)lớn hơn 1 là \(\frac{14}{2014^{2013}-13}\)
\(\frac{2014^{2012}+8}{2014^{2012}-11}\)lớn hơn 1 là \(\frac{19}{2014^{2012}-11}\)
\(\frac{14}{2014^{2013}-13}\)\(< \)\(\frac{19}{2014^{2012}-11}\)
\(\Rightarrow A< B\)
\(A=\frac{2^{2014}+1}{2^{2014}}B=\frac{2^{2014}+2}{2^{2014}+1}\)
So sánh
Ta có : A = \(\frac{2^{2014}+1}{2^{2014}}=1+\frac{1}{2^{2014}}\)
B = \(\frac{2^{2014}+2}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)
Vì : \(\frac{1}{2^{2014}}>\frac{1}{2^{2014}+1}\)
Nên A > B
Được thôi ban :
Ta có : \(A=\frac{2^{2014}+1}{2^{2014}}=\frac{2^{2014}}{2^{2014}}+\frac{1}{2^{2014}}=1+\frac{1}{2^{2014}}\)
\(B=\frac{2^{2014}+2}{2^{2014}+1}=\frac{2^{2014}+1}{2^{2014}+1}+\frac{1}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)
Đó ok chưa
So sánh 2 phân số: A= \(\frac{2014^{2013}+1}{2014^{2014}+1}\)và B= \(\frac{2014^{2012}+1}{2014^{2013}+1}\)
Gợi ý nhé: bạn hãy so sánh 2014A và 2014B rồi suy ngược lại A và B
Ta có:
2014A=20142014+ 2014/20142014+1=1+2013/20142014+1
2014B=20142013+2014/20142013+1=1+2013/20142013+1
vì 1+2013/20142014+1<1+2013/20142013+1 nên 10A < 10B
suy ra A<B
So sánh :
\(\frac{2^{2014}+1}{2^{2014}}\)
và \(\frac{2^{2014}+1}{2^{2014}+2}\)
ta thấy:
2^2014<2^2014+2
=>\(\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+1}{2^{2014}+2}\)
vậy......
Có : 22014 + 1 > 22014 nên \(\frac{2^{2014}+1}{2^{2014}}\)> 1 .
22104 + 1 < 22014 + 2 nên \(\frac{2^{2014}+1}{2^{2014}+2}\)< 1.
=> \(\frac{2^{2014}+1}{2^{2014}}\)>\(\frac{2^{2014}+1}{2^{2014}+2}\)
1 cách dễ hơn nè:
Có 22014+1 = 22014 + 1 ( tử và tử bằng nhau )
22014<22014+2
=>\(\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+1}{2^{2014}+2}\)