Cho S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/32+46 .Hay chung to rang S<1
cho S= 3/1.4 cong 3/4.7 cong 3/7.10 cong . . . cong 3/40.43 cong 3/ 43.46 .Hay chung to rang Slon hon 1
S = 3/1.4 + 3/4.7 +......+ 3/43.46
S = 1 - 1/4 + 1/4 - 1/7 +.......+ 1/43 - 1/46
S = 1 - 1/46
S = 45/46 < 1
=> S < 1 (đpcm)
Ai k mk mk k lại !!
cho S= 3/1.4+3/4.7+3/7.10+....+3/40.43+3/43. 46
chứng tở rằng S<1
S = 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 +.............+ 1/40 - 1/43 + 1/43 - 1/46
S = 1 - 1/46
S = 45/46 < 1
=> S < 1 (đpcm)
*** k mk nha các bạn ***
\(s=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{43.46}\)
\(\Rightarrow s=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{43}-\frac{1}{46}\)
\(\Rightarrow S=1-\frac{1}{46}=\frac{45}{46}\)
Tao có \(\frac{45}{46}<1\) => S < 1
S=3/1.4+3/4.7+3/7.10+...+3/40.43+43.46 CHứng minh S<1
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(=1-\frac{1}{46}
Cho S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46 . Chứng tỏ rằng S<1
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{10}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(=1-\frac{1}{46}\)
Vì \(1-\frac{1}{46}\) < 1
=> \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\) < 1
cho S= \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{40.43}+\dfrac{3}{43.46}\)
Hãy chứng tỏ rằng S<1
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{40.43}+\dfrac{3}{43.46}\\ S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{40}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}\\ S=1-\dfrac{1}{46}< 1\)
Vậy S < 1 (đpcm)
CHO S : 3/1.4 + 3/4.7 + 3/7.10 ... + 3/40.43 + 3/43.46
HÃY CHỨNG TỎ RẰNG S <1
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{43}-\frac{1}{46}..\)
\(S=1-\frac{1}{46}< 1\)
VẬY S<1
\(S=\frac{3}{1.4} +\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{40.43}+\frac{3}{43.46}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(S=1-\frac{1}{46}\)
=> S<1 (ĐCCM)
Bạn có cần giải thích tại sao tách được các phân số như thế không?
a.Chứng tỏ rằng B = 1/22 + 1/32 + 1/42 + 1/52 + 1/62 + 1/72 +1/82 < 1
b.Cho S = 3/1.4 + 3/4.7 + 3/7.10 +......+3/40.43 + 3/43.46 hãy chứng tỏ rằng S < 1
Giải:
a) Ta có:
1/22=1/2.2 < 1/1.2
1/32=1/3.3 < 1/2.3
1/42=1/4.4 < 1/3.4
1/52=1/5.5 < 1/4.5
1/62=1/6.6 < 1/5.6
1/72=1/7.7 < 1/6.7
1/82=1/8.8 <1/7.8
⇒B<1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
B<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
B<1/1-1/8
B<7/8
mà 7/8<1
⇒B<7/8<1
⇒B<1
b)S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46
S=1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46
S=1/1-1/46
S=45/46
Vì 45/46<1 nên S<1
Vậy S<1
Chúc bạn học tốt!
a)\(\dfrac{1}{2^2}<\dfrac{1}{1.2}\)
\(\dfrac{1}{3^3}<\dfrac{1}{2.3}\)
\(...\)
\(\dfrac{1}{8^2}<\dfrac{1}{7.8}\)
Vậy ta có biểu thức:
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)
\(B= 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(B<1-\dfrac{1}{8}=\dfrac{7}{8}<1\)
Vậy B < 1 (đpcm)
S=3/1.4 +3/4.7 +3/7.10 +...+3/40.43 +3/43.46
S=1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46
S=1-1/46 S=45/46<1
vậy S <1
!!!
S=1-1/4+1/4-1/7+......+1/43 - 1/46
= 1-1/46
= 45/46
S=1-1/4+1/4-1/7+......+1/43 - 1/46
= 1-1/46
= 45/46
Cho S= 3/1.4+3/4.7+3/7.10+.......3/40.43+3/43.46.
Hãy chứng tỏ rằng S<1
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(=1-\frac{1}{46}< 1\)
Vậy S<1
xin lỗi minh triều bạn làm kiểu này mình ko hiểu