1.2+2.3+3.4+....+49.50
Cho A=1/1.2 + 1/2.3 + + 1/ 3.4+...+1/49.50 ; B = 1.2+2.3+3.4+4.5+5.6+...+49.50
Tính 50 mủ 2 A – B/17
cho A = 1/1.2+1/2.3+1/3.4+...+1/49.50 ; cho B = 1.2+1.3+3.4+....+49.50
tính 50mủ 2A - B/17
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
\(B=1.2+2.3+3.4+...+49.50\)
\(3B=1.2.3+2.3.3+3.4.3+...+49.50.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50\)
\(=49.50.51\)
\(B=\frac{49.50.51}{3}=49.50.17\)
\(50^2.A-\frac{B}{17}=49.50-49.50=0\)
Tính
a) S= 1.2+2.3+3.4+...+32.33
b) S= 1.2+2.3+3.4+...+49.50
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 32.33
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 32.33.34
=> 3S = 32.33.34
=> S = \(\frac{32.33.34}{3}=11968\)
A= 1.2+2.3+3.4+......+ 49.50
A = 1.2 + 2.3 + ........+49.50
3A = 1.2.(3-0) + 2.3.(4-1)+........+49.50.(51 - 48)
3A = 1.2.3 + 2.3.4 - 1.2.3 +........ + 49.50.51 - 48.49.50
3A = 48.49.50 = 117600
A = 39200
Ta có :
Gọi A=1.2+2.3+3.4+4.5+...+49.50
A=1.2+2.3+3.4+4.5+...+49.50
3.A=3.(1.2+2.3+3.4+4.5+...+49.50)
3.A=1.2.3+2.3.3+3.3.4+3.4.5+...+3.49.50
3.A=1.2.(3-0)+2.3.(3-0)+(3-0).3.4+(3-0).4.5+...+(3-0).49.50
3.A=1.2.3-0+2.3.3-0+3.3.4-0+3.4.5-0+...+3.49.50-0
3.A=1.2.3-0+2.3.4-1.2.3+5.3.4-2.3.4+...+49.50.51-48.49.50
3.A=49.50.51
A= 49.50.51/3
A= 49.50.17.3/3
A=49.50.17
A=41650
Đáp số : A=41650
1x2+2x3+3x4+4x5+...+49x50=A
3.(1.2+2.3+3.4+4.5+...+49.50)=A.3
3.1.2+3.2.3+3.3.4+3.4.5+...+3.49.50+A.3
(3-0).1.2+(4-1).2.3+(5-2).3.4+(6-3).4.5+...+(51-48).49.50=A.3
3.1.2-0.1.2+4.2.3-1.2.3+5.3.4-2.3.4+6.4.5-3.4.5+...+51.49.50-48,49,50=A.3
51.49.50=A.3
51.49.50:3=A
các bạn cứ tính kết quả ra là ok
Tính: S= 1.2+2.3+3.4+....+49.50
Nhân cả 2 vế của S với 3 ta được :
3S = 3(1.2 + 2.3 + 3.4 + ..... + 49.50)
= 1.2.3 + 2.3.3 + 3.4.3 + ... + 49.50.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 49.50.(51 - 48)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 49.50.51 - 48.59.50
= (1.2.3 - 1.2.3) + (2.3.4 - 2.3.4) + ......... + (48.49.50 - 48.49.50) + 49.50.51
= 49.50.51
=> S = 49.50.51/3 = 41650
Ta có: 3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+49.50(51-48)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+49.50.51-48.49.50
=49.50.51
=124950
A=1.2+2.3+3.4+4.5+..........+49.50
Tính tổng (1.2)+(2.3)+(3.4)+...+(49.50)=?
B= 1.2 + 2.3 + 3.4 +...+49.50
Tính nhanh A = 1/1.2 + 1/2.3 + 1/3.4 + 1/3.4 + ... + 1/49.50
Ta thấy:\(\frac{1}{1.2}=1-\frac{1}{2},\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3},...,\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)
=>\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
=>\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
=>\(A=1-\frac{1}{50}\)
=>\(A=\frac{49}{50}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A=1-\frac{1}{50}\)
\(\Rightarrow A=\frac{49}{50}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=\frac{1}{1}-\frac{1}{50}\)
\(A=\frac{50}{50}-\frac{1}{50}\)
\(A=\frac{49}{50}\)