so sánh 1+1/2+1/3+...+1/2^99 và 50
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. Tính M: 3^0+3^1+3^2+3^3+......+3^50
2.So sánh :
a)16^19 và 8^25
b)5^36 và 11^24
c)A=99^9+99^8 và B=100^9
d)A=1+2+2^2+......+2^41 và B=2^42-1
a) 1619 và 825
Ta có :
1619 = ( 24 )19 = 276
825 = ( 23 )25 = 275
Vì 276 > 275 Nên 1619 > 825
b) 536 và 1124
Ta có :
536 = ( 53 )12 = 12512
1124 = ( 112 )12 = 12112
Vì 12512 > 12112 Nên 536 > 1124
1.
\(M=3^0+3^1+......+3^{50}.\)
\(\Rightarrow3M=3+3^2+.......+3^{51}\)
\(\Rightarrow3M-M=\left(3+3^2+.......+3^{51}\right)-\left(3^0+3+.....+3^{50}\right)\)
\(\Rightarrow2M=3^{51}-1\)
\(\Rightarrow M=\frac{3^{51}-1}{2}\)
2.
\(a,\)Ta có : \(16^{19}=\left(2^4\right)^{19}=2^{76}\)
\(8^{25}=\left(2^3\right)^5=2^{75}\)
Vì \(2^{76}>2^{75}\Rightarrow16^{19}>8^{25}\)
\(b,\)Ta có : \(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
Vì \(125^{12}>121^{12}\Rightarrow5^{36}>11^{24}\)
Cho B=\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{99}}\) ,So sánh B với 50
=
.;'¬,p¬.¬].¬].¬p.¬;.\=p¬l[;.\pl]¬\/='
-¬'0.0
? crisdevergamemer
1/1*1+1/2*3+1/3*5+1/4*7+...+1/49*97+1/50*99. Hãy so sánh với 7/6
Cho A=1+2+2^2+...+2^99
B=4^50+^1
So sánh A và B
A = 1 + 2 +22 +...+ 299
2A = 2 + 22 + 23 +....+2100
2A - A =2 + 22 + 23 +....+2100 -1 + 2 +22 +...+ 299
A = 2100 -1
B = 450 +1
B = 2100 + 1
=> B > A
A=1+2+22+...+299
A= 1 + 2100 -1
A = 2100
B=450 + 1 = 2100 + 1
\(\Rightarrow\)A<B
cái A mk suy ra dc nho quy nạp toán học
\(A=1+2+2^2+...+2^{99}\)
\(A=1+2^{100}-1\)
\(A=2^{100}\)
\(B=4^{50}+1=2^{100}+1\)
\(\Rightarrow B>A\)
Tính và so sánh: \(S=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}...+\frac{99}{49^2.50^2}\)\(T=\frac{1}{2^2-1^2}+\frac{1}{3^2-1^2}+\frac{1}{4^2-1^2}+...+\frac{1}{50^2-1^2}\)
\(S=\frac{3}{1^2\cdot2^2}+\frac{5}{2^2\cdot3^2}+\frac{7}{3^2\cdot4^2}+...+\frac{99}{49^2\cdot50^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+.....+\frac{1}{49^2}-\frac{1}{50^2}\)
\(=1-\frac{1}{50^2}=\frac{2499}{2500}\)
\(T=\frac{1}{\left(2-1\right)\left(2+1\right)}+\frac{1}{\left(3-1\right)\left(3+1\right)}+...+\frac{1}{\left(50-1\right)\left(50+1\right)}\)
\(=\frac{1}{1\cdot3}+\frac{1}{2\cdot4}+\frac{1}{3\cdot5}+...+\frac{1}{49\cdot51}\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{1}{2}\cdot\left(1+\frac{1}{2}-\frac{1}{51}\right)=\frac{151}{204}\)
Vì \(\frac{2499}{2500}>\frac{151}{204}\)nên S>T
JOKER_Võ Văn Quốc, T = \(\frac{1}{2}.\left(1-\frac{1}{51}+\frac{1}{2}-\frac{1}{50}\right)\)mới đúng
Sẽ dễ hơn nếu bạn chia ra 2 vế \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)và \(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{48+50}\)
Cho M = 1/50 + 1/51 + ... + 1/98 + 1/99 . So sánh M với 1/2
Ta có :
\(\frac{1}{50}>\frac{1}{100}\)
\(\frac{1}{51}>\frac{1}{100}\)
............
\(\frac{1}{98}>\frac{1}{100}\)
\(\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow\frac{1}{50}+\frac{1}{51}+....+\frac{1}{98}+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}=\frac{50.1}{100}=\frac{1}{2}\)
\(\Rightarrow M>\frac{1}{2}\)
Ta có: \(\frac{1}{50}>\frac{1}{51}>....>\frac{1}{99}\)
\(\Rightarrow M>\frac{1}{99}+\frac{1}{99}+...+\frac{1}{99}=\frac{50}{99}>\frac{50}{100}=\frac{1}{2}\)
Vậy M > 1/2
Ta có :
M = \(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{98}+\frac{1}{99}\)
M > \(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\)( 50 số hạng )
\(=\frac{1}{100}.50=\frac{1}{2}\)
Vậy M > \(\frac{1}{2}\)
So sánh:1/1×2+1/2×3+...+1/99×100 và 1
Ta có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}.\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)\(< 1\)
Vậy : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}< 1\)
Đặt :
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Vậy \(A=\frac{99}{100}\)
Vì \(\frac{99}{100}< 1\)nên \(A< 1\)
Học tốt #
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
So sánh (1/3+1/3^2+1/3^3+.......+1/3^99 ) và 1/2
So sánh a và b A = 5 mũ 49 + 1 / 5 mũ 50 + 1
B = 5 mũ 99 + 1 / 5 mũ 50 + 1
A= 3 mũ 49 - 5 / 3 mũ 48 - 5 / 3 mũ 50 - 5 / 3 mũ 49 - 5