tính A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5+ ......+ 1/2014.2015.2016
Tính A=1/1.2.3+1/2.3.4+1/3.4.5+....+1/2014.2015.2016
tính tổng sau: A=1/1.2.3+1/2.3.4+1/3.4.5+...+1/2014.2015.2016
Ta có nhận xét: \(\frac{2}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{k\left(k+1\right)}-\frac{1}{\left(k+1\right)\left(k+2\right)}\)
Áp dụng tính A ta có:
\(2.A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2014.2015.2016}\)
\(\Rightarrow2.A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)
\(\Rightarrow2.A=\frac{1}{1.2}-\frac{1}{2015.2016}=\frac{2015.1008-1}{2015.2016}\)
\(\Rightarrow A=\left(\frac{2015.1008-1}{2015.2016}\right):2\)
Cho A= 1/1.2.3+ 1/2.3.4+1/3.4.5+...+1/2014.2015.2016. So Sánh A với 1/4.
A = 1 - 1/2 - 1/3 + 1/2 - 1/3 - 1/4 + ... + 1/2014 - 1/2015 - 1/2016
A = 1- 1/2016
A = 2015/2016
A > 1/4
cho A= 1/1.2.3+1/2.3.4+1/3.4.5+....+1/2014.2015.2016 so sánh với 1/4
A=4949/19800 và 1/4
4949/19800 < 1/4
Xong! t*** mik đê!!!
Cho A= 1/1.2.3+1/2.3.4+1/3.4.5+...+1/2014.2015.2016. So sánh với 1/4
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)
\(A=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}\right)\)
\(A=0,2499998...<0,25\)
\(\Rightarrow A<\frac{1}{4}\)
Cho A=1/1.2.3+1/2.3.4+1/3.4.5+...+1/2014.2015.2016 so sánh A với 1/4
So sánh A với 1/4 biết:
Với A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5+....+1/2014.2015.2016
A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/2014.2015.2016
=> A = 1/2.(2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ... + 2/2014.2015.2016)
=> A = 1/2.(1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + ... + 1/2014.2015 - 1/2015.2016)
=> A = 1/2.(1/2 - 1/2015.2016)
=> A < 1/2.1/2 = 1/4
Ta có: \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{2014.2015.2016}\)
\(\Rightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{2014.2015.2016}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2015.2016}\)
\(\Rightarrow A=\left(\frac{1}{2}-\frac{1}{2015.2016}\right):2\)
\(\Rightarrow A=\frac{1}{4}-\frac{1}{2015.2016.2}\)
\(\Rightarrow A< \frac{1}{4}\)
Ta có:
A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)
2A = \(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2014.2015.2016}\)
2A = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)
2A = \(\frac{1}{1.2}-\frac{1}{2015.2016}\)
=> 2A < \(\frac{1}{1.2}=\frac{1}{2}\)
=> A < \(\frac{1}{4}\)
Vậy A < \(\frac{1}{4}\)
ChoA=1/1.2.3+1/2.3.4+1/3.4.5+...+1/2014.2015.2016
Các bạ̣̣n giả̉̉i hộ̣̣̣̣ mìnk nké
2A = [1/1.2-1/2.3]+[1/2.3-1/3.4]+...+[1/2014.2015-1/2015.2016]
2A = 1/1.2-1/2.3+1/2.3-1/3.4+...+1/2014.2015-1/2015.2016
2A = 1/1-1/2015.2016
2A = 2015.2016-1/2015.2016
A = \(\frac{\left[2015.2016-1\right]:2}{2015.2016}=0.4999998769\)
A= \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.....+\frac{1}{2014.2015.2016}.\)So sánh A với 1/4