Cho S = 3/1x4 + 3/4x7 + 3/7×10 +......+ 3/40×30 + 3/43×46. Hãy chứng tỏ S<1
Ai nhanh mk tích
Cho S = 3/1*4+3/4*7+3/7*10+...+3/40*43+3/43+46. Hãy chứng tỏ S < 1
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\) < 1
\(S=3\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{40.43}+\frac{1}{43.46}\right)\)
\(S=3.\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\right)\)
\(\Rightarrow S=1-\frac{1}{46}\Rightarrow S< 1\left(đpcm\right)\)
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
= \(1-\frac{1}{46}< 1\)
\(\Rightarrow S< 1\left(đpcm\right)\)
Cho S=3/1x4+3/4x7+3/7x10+...+3/40x43+3/43x46. Hãy chứng tỏ S<1
Cho S=3/1x4+3/4x7+3/7x10+...+3/40x43+3/43x46. Hãy chứng tỏ S<1
ĐPM : S < 1
S=3/1x4+3/4x7+3/7x10+...+3/40x43+3/43x46
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}\)
\(S=1-\frac{1}{46}\)
=>S<1
S = 3/1.4 + 3/4.7 +....+ 3/43.46
S = 1 - 1/4 + 1/4 - 1/7 +.....+ 1/43 - 1/46
S = 1 - 1/46
S = 45/46 < 1
=> S < 1 (đpcm)
s = cho 3/1x4 + 3/4x7+....+3/43x46 chứng tỏ s>1
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}\)
\(S=1-\frac{1}{46}<1\)
=>chứng minh bị sai hoặc đề sai
S=\(\frac{3}{1.4}+\frac{3}{4.7}+...........+\frac{3}{43.46}\)
=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...........+\frac{1}{43}-\frac{1}{46}\)
=\(1-\frac{1}{46}<1\)
\(\Rightarrow S<1\)
S = 3/1.4 + 3/4.7 + ... + 3/43.46
= 3 - 3/4 + 3/4 - 3/7 + ... + 3/43 - 3/46
= 135/46 > 1.
=> S > 1.
=> Điều cần chứng minh.
a)Cho B=1/5+1/6+...+1/19.Hãy chứng tỏ rằng B >1
b)Tính nhanh giá trị biểu thức M=3/5+3/7+3/11 trên 4/5+4/7-4/11
c)Chứng tỏ rằng S<1 biết S=3/1x4+3/4x7+3x7x10+...+3/40x43+3/43x46
S = 3/1*4 + 3/4*7 + 3/7*10 + ...+3/40*43 + 3/43*46
hãy chứng tỏ S < 1
Các bạn giúp dùm mình với nhé !
giúp mình với đi
các bạn ơi
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(S=1-\frac{1}{46}< 1\)
Chứng tỏ S < 1
Ủng hộ mk nha ^_^
S = \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{43.46}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{43}-\frac{1}{46}\)
\(=1-\frac{1}{46}=\frac{45}{46}< 1\)
S=1-1/4 + 1/4 - 1/7 +1/7 - 1/10 +...+ 1/40 - 1/43 +1/43 -1/46
= 1-1/46 < 1 (ĐPCM)
ChoS= 3/1*4 +3/4*7 +3/7*10 +.......+ 3/40*43 +3/43*46
Chứng tỏ S <1
\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(=1-\frac{1}{46}< 1\)
Vậy \(S< 1\)
Chúc bạn học tốt !!!
cho S = 3/1x4 + 3/4x7 + 3/7x10+ ...+3/40x43 + 3/43x46.Hãy chứng minh S<1
= 1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46
= 1 - 1/46 = 45/46 < 1
3/4*1+3/4*7+3/7*10+........+3/40*43+3/43*46 chứng mính s<1
Ta có: \(\frac{3}{1.4}+\frac{3}{4.7}+......+\frac{3}{40.43}+\frac{3}{43.46}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(=1-\frac{1}{46}\)
Vì \(\frac{1}{46}>0\Rightarrow1-\frac{1}{46}< 1\)
Vậy \(\frac{3}{1.4}+\frac{3}{4.7}+....+\frac{3}{43.46}< 1\)
CHO: S= 3/1x4 + 3/4x7 + 3/7x10 +......+ 3/n(n+3)
CHỨNG MINH RẰNG S bé hơn 1
Ta có:
S=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
S=\(1-\frac{1}{n+3}\)
=>S<1
Vậy S<1
\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
Sory mình bấm bị lỗi
Bài giải
\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{n\left(n+3\right)}\)
\(S=3\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{n\left(n+3\right)}\right)\)
\(S=3\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+3}\right)\)
\(S=3\left(1-\frac{1}{n+3}\right)\)
\(S=3\left(\frac{n+3}{n+3}-\frac{1}{n+3}\right)=3\cdot\frac{n+2}{n+3}=\frac{3n+6}{n+3}>1\)
Đề sai à bạn ?