\(A=\frac{20^{10}+1}{20^{10}-1}v\text{à}B=\frac{20^{10}-1}{20^{10}-3}Sos\text{á}nhAv\text{à}B\)
So sánh
\(a,2^{30}+3^{30}+4^{30}v\text{à}3^{20}+6^{20}+8^{20}\)
\(b,2^{30}+3^{30}+4^{30}v\text{à}3.24^{10}\)
\(c,2^0+2^1+2^2+...+2^{50}v\text{à}2^{51}\)
c) Đặt \(A=2^0+2^1+2^2+...+2^{50}\)
\(\Leftrightarrow2A=2^1+2^2+2^3...+2^{51}\)
\(\Leftrightarrow2A-A=2^1+2^2+2^3...+2^{51}\)\(-2^0-2^1-2^2-...-2^{50}\)
\(\Leftrightarrow A=2^{51}-2^0=2^{51}-1< 2^{51}\)
Vậy \(2^0+2^1+2^2+...+2^{50}< 2^{51}\)
a)Ta có: \(\hept{\begin{cases}2^{30}=\left(2^3\right)^{10}=8^{10}\\3^{30}=\left(3^3\right)^{10}=27^{10}\\4^{30}=\left(2^2\right)^{30}=2^{60}\end{cases}}\)và \(\hept{\begin{cases}3^{20}=\left(3^2\right)^{10}=9^{10}\\6^{20}=\left(6^2\right)^{10}=36^{10}\\8^{20}=\left(2^3\right)^{20}=2^{60}\end{cases}}\)
Mà \(8^{10}< 9^{10}\); \(27^{10}< 36^{10}\);\(2^{60}=2^{60}\)nên
\(8^{10}+27^{10}+2^{60}< 9^{10}+36^{10}+2^{60}\)
hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)
b) Ta có: \(4^{30}=2^{30}.2^{30}=8^{10}.4^{15}\)
\(3.24^{10}=3.8^{10}.3^{10}=3^{11}.8^{10}\)
Vì \(4^{15}>3^{11}\) nên \(8^{10}.4^{15}>3^{11}.8^{10}\)
hay \(2^{30}+3^{30}+4^{30}>3.24^{10}\)
So Sánh \(A=\frac{20^{10}+1}{20^{10}-1}\text{và }B=\frac{20^{10}-1}{20^{10}-3}\)
A = \(\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)
B = \(\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+2}{2^{10}-3}=1+\frac{2}{2^{10}-3}\)
Vì \(\frac{2}{2^{10}-1}
\(A=\frac{17^{20}+2}{17^{20}-1}v\text{à }B=\frac{17^{20}-2}{17^{20}-5}\)
\(A=\frac{17^{20}+2}{17^{20}-1}=\frac{17^{20}-1+3}{17^{20}-1}=1+\frac{3}{17^{20}-1}\)
\(B=\frac{17^{20}-2}{17^{20}-5}=\frac{17^{20}-5+3}{17^{20}-5}=1+\frac{3}{17^{20}-5}\)
Vì \(17^{20}-1>17^{20}-5\)
\(=>\frac{3}{17^{20}-1}1+\frac{3}{17^{20}-1}
Bài 1: So sánh
\(\frac{429}{639}v\text{à}\frac{219}{333}\)
\(\frac{10^{15}+1}{10^{16}+1}v\text{à}\frac{10^{16}+1}{10^{17}+1}\)
\(\frac{429}{639}>\frac{219}{333}\)
\(\frac{10^{15}+1}{10^{16}+1}>\frac{10^{16}+1}{10^{17}+1}\)
So sánh :
a,\(\frac{7}{23}v\text{à}\frac{11}{28}\)
b,\(\frac{2014}{2015}+\frac{2015}{2016}v\text{à}\frac{2014+2015}{2015+2016}\)
c,A=\(\frac{2^{10}+1}{2^{11}+1}v\text{à B=\frac{2^{11}+1}{2^{12}+1}}\)
a)7/23<11/28
b)2014/2015+2015/2016>2014+2015/2015+2016
c) A= gì vậy
so sánh a)\(\frac{10^{2014}-1}{10^{2015}-1}v\text{à}\frac{10^{2013}-1}{10^{2014}-1}\)
b) \(\frac{n+3}{n-2}v\text{à}\frac{n+5}{n-4}\)
Câu 1: Chứng minh:
\(31.82+125.48+21.43=125.67=1500\)
Câu 2: So sánh:
1,\(\sqrt{51}-\sqrt{5}v\text{à}\sqrt{20}-\sqrt{6}\)
2,\(\sqrt{2}+\sqrt{8}v\text{à}\sqrt{3}+3\)
3,\(\sqrt{37}-\sqrt{14}v\text{à}6-\sqrt{15}\)
4,\(\sqrt{5}+\sqrt{10}v\text{à}5,3\)
\(M=\frac{\text{2 . 6 . 10 + 4 . 12 . 20 + 6 . 18 . 30 + ..... + 20 . 60 . 100}}{\text{1 . 2 . 3 + 2 . 4 . 6 + 3 . 6 . 9 + ..... + 10 . 20 . 30}}\)
Rút gọn biểu thức trên nha.
\(M=\frac{2.6.10+4.12.20+...+20.60.100}{1.2.3+2.4.6+...+10.20.30}=\frac{2.6.10.1^3+2.6.10.2^3+...+2.6.10.10^3}{1.2.3.1^3+1.2.3.2^3+...+1.2.3.10^3}\)
\(=\frac{2.6.10.\left(1^3+2^3+...+10^3\right)}{1.2.3.\left(1^3+2^3+...+10^3\right)}=\frac{2.6.10}{1.2.3}=20\)
vậy M=20
So sánh :
A= 2010 + 1
2010 - 1
B = 2010 - 1
2010 - 3