Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
ND
Xem chi tiết
ND
Xem chi tiết
KN
Xem chi tiết
DD
3 tháng 12 2018 lúc 16:31

a) A = 2014 + 20142 + 20143 + 20144 + ..... + 20142014

A = ( 2014 + 20142 ) + ( 2014+ 20144 ) + ..... + ( 20142013 + 20142014 )

A = 2014( 1 + 2014 ) + 20143( 1 + 2014 ) + ....... 20142013( 1 + 2014 )

A = 2014 . 2015 + 20143 . 2015 + ....... + 20142013 . 2015

A = ( 2014 + 20143 + ...... 20142013 ) . 2015 chia hết cho 2015

b) Ta có 6 chia hết cho n - 1

=> n-1 thuộc Ư(6) = { 1 ; 2 ; 3 ; 6 }

Nếu n - 1 = 1 => n = 2 (tm)

Nếu n - 1 = 2 => n = 3 (tm)

Nếu n - 1 = 3 => n = 4 (tm)

Nếu n - 1 = 6 => n = 7 (tm)

Vậy n thuộc { 2 ; 3 ; 4 ; 7 }

Mk ko chắc là đúng

hok tốt

Bình luận (0)
TP
Xem chi tiết
MT
18 tháng 6 2015 lúc 13:45

a)2014 + 2014^2 + 2014^3 + ... + 2014^10

=(2014+2014^2)+(2014^3+2014^4)+...+(2014^9+2014^10)

=2014(1+2014)+2014^3(1+2014)+...+1014^9(1+2014)

=2014.2015+2014^3.2015+...+2014^9.2015

vì 2014.2015 chia hết cho 2015

2014^3.2015 chia hết cho 2015

.....

2014^9.2015 chia hết cho 2015

=>2014.2015+2014^3.2015+...+2014^9.2015 chia hết cho 2015

vậy 2014 + 2014^2 + 2014^3 + ... + 2014^10 chia hết cho 2015 

Bình luận (0)
HG
18 tháng 6 2015 lúc 13:45

a,2014+20142+20143+....+201410

=(2014+20142)+(20143+20144)+.....+(20149+201410)

=2014.(1+2014)+20143.(1+2014)+.........+20149.(1+2014)

=2014.2015+20143.2015+..........+20149.2015

=2015.(2014+20143+...........+20149\(^._:\)2015 (đpcm)

b,4n+1\(^._:\)n+1

4n+4 -3\(^._:\)n+1

Vì 4n+4\(^._:\)n+1 =>3\(^._:\)n+1

=>n+1\(\in\){1; -1; 3; -3}

n+1n
10
-1-2
32
-3-4

KL: n\(\in\){0; 2; -2; -4}

 

Bình luận (0)
H24
Xem chi tiết
LC
Xem chi tiết
LC
19 tháng 6 2019 lúc 9:12

dùng đồng dư nhé

Bình luận (0)
LC
19 tháng 6 2019 lúc 9:35

ai làm đúng mình k cho

Bình luận (0)
H24
19 tháng 6 2019 lúc 10:10

Mình làm,trong quá trình làm,sẽ có khi tính sai sót,về cơ bản,hướng làm là vậy. Bạn tự làm lại cho bài toán hoàn thiện và ko bị sai sót như mình nhé:)

\(2012^{2013}\equiv\left(2012^4\right)^{503}.2012\equiv3^{503}.2012\)

\(\equiv\left(3^4\right)^{125}.3^3.2012\equiv3^{128}.2012\equiv\left(3^4\right)^{32}.2012\)

\(\equiv3^{32}.2012\equiv\left(3^4\right)^8.2012\equiv\left(3^4\right)^2.2012\)

\(\equiv3^2.2012\equiv12\) (mod 13)

Lại có: \(2013^{2014}\equiv\left(2013^4\right)^{503}.2013^2\equiv3^{503}.4\)

\(\equiv\left(3^4\right)^{125}.3^3.4\equiv3^{128}.4\equiv3^{32}.4\equiv\left(3^8\right)^4.4\)

\(\equiv9^4.4\equiv9.4\equiv10\)

Lại có: \(2014^{2015}\equiv\left(2014^{31}\right)^{65}\)

Mà ta có \(2014^2\equiv1\left(mod13\right)\Rightarrow2014^{30}=\left(2014^2\right)^{15}\equiv1\)

\(\Rightarrow2014^{31}\equiv2014\equiv12\left(mod13\right)\) do vậy: \(2014^{2015}\equiv\left(2014^{31}\right)^{65}\equiv12^{65}\)

Mà ta có: \(12\equiv-1\left(mod13\right)\Rightarrow12^{65}\equiv-1\left(mod13\right)\)

Nên \(2014^{2015}\equiv\left(2014^{31}\right)^{65}\equiv12^{65}\equiv-1\) (mod 13) 

Suy ra \(A\equiv12+10-1\equiv21\equiv8\left(mod13\right)\)

Hay A chia 13 có số dư = số dư của 8 chia 13 = 8

Vậy..

Bình luận (0)
JK
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết