cho 2 số chính phương liên tiếp.CMR tổng của 2 số đó cộng tích của chúng là 1 số chính phương lẻ.
cho 2 số chính phương liên tiếp . Chúng minh rằng tổng của 2 số đó cộng với tích của chúng là 1 số chính phương lẻ .
Gọi hai số chính phương liên tiếp là \(k^2\)và \(\left(k+1\right)^2\)
Ta có: \(k^2+\left(k+1\right)^2+k^2\left(k+1\right)^2\)
\(=k^2+k^2+2k+1+k^4+2k^3+k^2\)
\(=k^4+2k^3+3k^2+2k+1=\left(k^2+k+1\right)^2\)
\(=\left[k\left(k+1\right)+1\right]^2\)là số chính phương lẻ
Vậy tổng của 2 số đó cộng với tích của chúng là 1 số chính phương lẻ ( đpcm )
Cho 2 số chính phương liên tiếp.Chứng minh rằng tổng của 2 số đó cộng với tích của chúng là 1 số chính phương lẻ
Cho 2 số chính phương liên tiếp. Chứng minh rằng: tổng của 2 số đó cộng với tích của chúng là 1 số chính phương lẻ
gọi 2 số chính phương liên tiếp là k^2 và (k + 1)^2
theo đề bài ta có :
k^2 + (k+1)^2 + k^2(k+1)^2
= k^2 + k^2 + 2k + 1 + k^2(k^2 + 2k + 1)
= 2k^2 + 2k + 1 + k^4 + 2k^3 + k^2
= k^4 + 2k^3 + 3k^2 + 2k + 1
= k^4 + k^2 + 1 + 2k^3 + 2k^2 + 2k
= (k^2 + k + 1)^2
= [k(k+1)+1]^2
k(k+1) chia hết cho 2 (2 số tự nhiên liên tiếp) => k(k+1) +1 lẻ
=> [k(k+1)+1)^2 là số chính phương lẻ
Giả sử hai số chính phương liên tiếp đó là \(a^2,\left(a+1\right)^2\)
Ta có : \(a^2+\left(a+1\right)^2+a.\left(a+1\right)\)
\(=a^2+a^2+2a+1+a^2+a\)
\(=3a^2+3a+1\)
.....
Cho 2 số chính phương liên tiếp. Chứng minh rằng tổng 2 số đó cộng với tích của chúng là 1 số chính phương lẻ.
Cho 2 số chính phương liên tiếp. CMR tổng của 2 số đó cộng với tích của chúng là một số chính phương lẻ.
Cho 2 số chính phương liên tiếp. CMR tổng của 2 số đó cộng với tích của chúng là một số chính phương lẻ.
cho 2 số chính phương liên tiếp . Chứng minh tổng 2 số đó cộng với tích của chúng là một số chính phương lẻ
C/m: Tổng của 2 số chính phương liên tiếp cộng với tích của chúng là 1 số chính phương lẻ
Gọi hai số chính phương liên tiếp đó là k^2 và (k+1)^2
Ta có:
k^2+(k+1)^2+k^2.(k+1)^2
=k^2+k^2+2k+1+k^4+2k^3+k^2
=k^4+2k^3+3k^2+2k+1
=(k^2+k+1)^2
=[k(k+1)+1]^2 là số chính phương lẻ.
Vì là hai số chính phương liên tiếp
nên ta đặt hai số đó là k2 và (k+1)2 ( k ∈ Z )
Theo đề bài ta có : k2 + ( k + 1 )2 + k2(k+1)2
= k2 + k2 + 2k + 1 + ( k2 + k )2
= k4 + 2k3 + 3k2 + 2k + 1
= ( k4 + k3 + k2 ) + ( k3 + k2 + k ) + ( k2 + k + 1 )
= k2( k2 + k + 1 ) + k( k2 + k + 1 ) + ( k2 + k + 1 )
= ( k2 + k + 1 )2 = [ k( k + 1 ) + 1 ]2
Vì k ; k+1 là hai số nguyên liên tiếp nên sẽ có 1 số chia hết cho 2
=> k( k + 1 ) chẵn => k( k + 1 ) + 1 lẻ
=> [ k( k + 1 ) + 1 ]2 là một số chính phương lẻ (đpcm)
Cho hai số chính phương liên tiếp. Chứng minh rằng tổng của hai số đó cộng với tích của chúng là một số chính phương lẻ.
Gọi 2 số chính phương liên tiếp đó là \(n^2,\left(n+1\right)^2\). Ta có:
\(P=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)
\(=n^2+n^2+2n+1+n^2\left(n^2+2n+1\right)\)
\(=n^4+2n^3+3n^2+2n+1\)
Ta có \(\dfrac{P}{n^2}=n^2+2n+3+\dfrac{2}{n}+\dfrac{1}{n^2}\)
\(=\left(n+\dfrac{1}{n}\right)^2+2\left(n+\dfrac{1}{n}\right)+1\)
\(=\left(n+\dfrac{1}{n}+1\right)^2\)
\(\Rightarrow P=\left[n\left(n+\dfrac{1}{n}+1\right)\right]^2=\left(n^2+n+1\right)^2=\left[n\left(n+1\right)+1\right]^2\)
Dễ dàng kiểm chứng được \(2|n\left(n+1\right)\), do đó \(n\left(n+1\right)+1\) là số lẻ, suy ra đpcm.
Hai số chính phương liên tiếp là \(n^2;\left(n+1\right)^2\)
Theo đề ta có :
\(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)
\(=n^2+n^2+2n+1+n^4+2n^3+n^2\)
\(=\left(n^4+n^3+n^2\right)+\left(n^3+n^2+n\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)^2\)
\(=\left[n\left(n+1\right)+1\right]^2\)
mà \(n\left(n+1\right)⋮2\) (là 2 số tự nhiên liên tiếp)
\(\Rightarrow n\left(n+1\right)+1\) là số lẻ
\(\Rightarrow\left[n\left(n+1\right)+1\right]^2\) là số chính phương lẻ
\(\Rightarrow dpcm\)