Tìm nghiệm nguyên của phương trình: x2 = y( y+1)( y+2)(y+3)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1 : tìm x ; y nguyên dương
2xy + x + y = 83
Bài 2 tìm nghiệm nguyên của phương trình :
a ) x2 + 2y2 + 3xy - x - y + 3 = 0
b ) 6x2y3 + 3x2 - 10y3 = -2
Tìm nghiệm nguyên của phương trình: x 2 − 2 y ( x − y ) = 2 ( x + 1 )
x 2 − 2 y ( x − y ) = 2 ( x + 1 ) < = > x 2 − 2 ( y + 1 ) x + 2 ( y 2 − 1 ) = 0 ( 1 )
Để phương trình (1) có nghiệm nguyên x thì D' theo y phải là số chính phương
+ Nếu Δ ' = 4 = > ( y − 1 ) 2 = 0 < = > y = 1 thay vào phương trình (1) ta có :
x 2 − 4 x = 0 < = > x ( 2 − 4 ) < = > x = 0 x − 4
+ Nếu Δ ' = 1 = > ( y − 1 ) 2 = 3 < = > y ∉ Z .
+ Nếu Δ ' = 0 = > ( y − 1 ) 2 = 4 < = > y = 3 y = − 1
+ Với y = 3 thay vào phương trình (1) ta có: x 2 − 8 x + 16 = 0 < = > ( x − 4 ) 2 = 0 < = > x = 4
+ Với y = -1 thay vào phương trình (1) ta có: x 2 = 0 < = > x = 0
Vậy phương trình (1) có 4 nghiệm nguyên ( x ; y ) ∈ {(0;1);(4;1);(4;3);(0;-1)}
Tìm nghiệm nguyên dương của phương trình sau:
(2x + 5y + 1)(2|x| + y + x2 + x) = 105
Do VP là số lẻ
<=> 2x + 5y + 1 là số lẻ và \(2^{\left|x\right|}+y+x^2+x\) là số lẻ
<=> y chẵn và \(2^{\left|x\right|}+y+x\left(x+1\right)\) là số lẻ
=> \(2^{\left|x\right|}\) là số lẻ (do y chẵn và x(x+1) chẵn)
=> x = 0
PT <=> \(\left(5y+1\right)\left(1+y\right)=105\)
<=> y = 4 (thử lại -> thỏa mãn)
KL: x = 0; y = 4
Tìm nghiệm nguyên của phương trình : x2=y(y+1)(y+2)(y+3)
x2 = y ( y + 1 ) ( y + 2 ) ( y + 3 )
x2 = ( y2 + 3y ) ( y2 + 3y + 2 )
đặt y2 + 3y + 1 = a
\(\Rightarrow\)x2 = ( a - 1 ) ( a + 1 ) = a2 - 1
\(\Rightarrow\)( x - a ) ( a + x ) = -1
từ đó tìm đươc x,y
Tìm nghiệm nguyên của phương trình: x2= y(y+1)(y+2)(y+3)
1)Tìm nghiệm nguyên của phương trình:
y3-x3=91
2)Tìm nghiệm nguyên của phương trình:
x2=y2+y+13
3)Tìm nghiệm nguyên của phương trình:
x2+x+1991=y2
Tìm nghiệm nguyên của phương trình: (x+y+1)^2=3(x^2+y^2+1)
Tìm nghiệm nguyên \(\left(x;y\right)\) của phương trình \(x^2=y\left(y+1\right)\left(y+2\right)\left(y+3\right)\)
Ta có \(VP=y\left(y+3\right)\left(y+1\right)\left(y+2\right)\)
\(VP=\left(y^2+3y\right)\left(y^2+3y+2\right)\)
\(VP=\left(y^2+3y+1\right)^2-1\)
\(VP=t^2-1\) (với \(t=y^2+3y+1\ge0\))
pt đã cho trở thành:
\(x^2=t^2-1\)
\(\Leftrightarrow t^2-x^2=1\)
\(\Leftrightarrow\left(t-x\right)\left(t+x\right)=1\)
Ta xét các TH:
\(t-x\) | 1 | -1 |
\(t+x\) | 1 | -1 |
\(t\) | 1 | -1 |
\(x\) | 0 |
0 |
Xét TH \(\left(t,x\right)=\left(1,0\right)\) thì \(y^2+3y+1=1\) \(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-3\end{matrix}\right.\) (thử lại thỏa)
Xét TH \(\left(t,x\right)=\left(-1;0\right)\) thì \(y^2+3y+1=-1\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\) (thử lại thỏa).
Vậy các bộ số nguyên (x; y) thỏa mãn bài toán là \(\left(0;y\right)\) với \(y\in\left\{-1;-2;-3;-4\right\}\)
1. tìm nghiệm nguyên của phương trình:
p(x + y) = xy và p nguyên tố
2. tìm nghiệm nguyên của phương trình:
a. x + y + z + 9 = xyz
b. x + y + 1 = xyz