tìm các số nguyên x,y biết:x/9=1/y
tìm các số nguyên x,y biết:x/y=2/7
x=2k
y=7k với kEZ, k khác 0
100% dung
Với x/y=2/7
=> x=2k ; y=7k (k \(\in\) Z ; k \(\ne\) 0
tìm các số nguyên x,y biết:x/y=2/7
các bạn giúp mik nha!
\(\frac{x}{y}=\frac{2}{7}\)(x, y \(\inℤ\))
=> x = 2m; y = 7m (m \(\inℤ,m\ne0\))
Ta có \(\frac{x}{y}=\frac{2}{7}\left(x,y\in Z\right)\)
\(\Rightarrow\hept{\begin{cases}x=2a\\y=7b\end{cases}}\)với \(a,b\inℤ;b\ne0\)
Ta có\(\frac{x}{y}=\frac{2}{7}\Rightarrow2y=7x\)\(\Rightarrow\hept{\begin{cases}x=\frac{2y}{7}\\y=\frac{7x}{2}\end{cases}}\)
Tìm hai số nguyên dương x; y biết:x/6-1/2=1/y
Ta có: \(\frac{x}{6}-\frac{1}{2}=\frac{1}{y}\)
\(\Leftrightarrow\frac{x}{6}-\frac{3}{6}=\frac{1}{y}\)
\(\Leftrightarrow\frac{x-3}{6}=\frac{1}{y}\)
\(\Leftrightarrow\left(x-3\right)y=6\)
Lập bảng nốt thôi
tìm x,y nguyên biết:x/2=1/6+3/y
Ta có x/2 = 1/6 + 3/y ⇒ x/2 - 1/6 = 3/y ⇒ 3x - 1/ 6 = 3/y
Vậy y( 3x - 1 ) = 18
Mà x; y nguyên nên 3x - 1 nguyên và y; 3x - 1 ϵ Ư( 18 ) = { -1; 1; 2; -2; -3; 3; -6; 6; 18; -18 }
Vì 3x - 1 chia 3 dư 2 nên ( 3x - 1 ) ϵ { 2; -1 }
Nếu 3x - 1 = 2 ⇒ x = 1; y = 9
Nếu 3x - 1 = -1 ⇒ x = 0; y = -18
Vậy các cặp số nguyên ( x; y ) cần tìm là ( 1; 9 ) ; ( 0; -18 )
tìm số nguyên x,y,z biết:
x/18=20/y=z/21=4/3
\(\dfrac{x}{18}=\dfrac{4}{3}\Rightarrow x=\dfrac{18.4}{3}=24\\ \dfrac{20}{y}=\dfrac{4}{3}\Rightarrow y=\dfrac{20.3}{4}=15\\ \dfrac{z}{21}=\dfrac{4}{3}\Rightarrow z=\dfrac{21.4}{3}=28\)
Ta có:
\(\dfrac{x}{18}\) = \(\dfrac{4}{3}\)
⇒ x = \(\dfrac{4}{3}\) . 18
⇒ x = 24
\(\dfrac{20}{y}\) = \(\dfrac{4}{3}\)
⇒ y = 20 : \(\dfrac{4}{3}\)
⇒ y = 15
\(\dfrac{z}{21}\) = \(\dfrac{4}{3}\)
⇒ z = \(\dfrac{4}{3}\) . 21
⇒ z = 28
⇒ x + y + z = 24 + 15 + 28 = 67
Vậy x + y + z = 67
tìm số nguyên x,y,z,u,t biết:x/18=-98/y=-t/102=u/-78
Tìm x,y là số nguyên tố biết:X2+117=Y2
a.Chứng tỏ rằng mọi phân số có dạng 15n+4/12n+3(n thuộc N)đều là phân số tối giản.
b.Tìm các số nguyên x,y biết:x/-2=9/y
c.Lập các cặp phân số bằng nhau từ đẳng thức:(-2).9=3.(-6)
tìm các số thực x, y, z biết:
x + y + z + 8 = \(2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)
Áp dụng Bđt Bunhiacopxki :
\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)
Đặt \(t=x+y+z+8\)
\(\left(1\right)\Leftrightarrow t^2=56t-784\)
\(\Leftrightarrow t^2-56t+784=0\)
\(\Leftrightarrow\left(t-28\right)^2=0\)
\(\Leftrightarrow t=28\)
\(\Leftrightarrow x+y+z+8=28\)
\(\Leftrightarrow x+y+z-6=14\)
\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài