Tìm số nguyên tố p mà khi chia nó cho 51 dư 17
tìm số nguyên tố p mà khi chia nó cho 51 có dư 17
tìm số nguyên dương nhỏ nhất mà khi chia cho 150 thì dư 64, khi chia cho 151 thì dư 51
Gọi số cần tìm là a.
Vì a chia 150 dư 64 => a = 150.n+64
Vì a chia 151 dư 51 => a = 151.m+51
=> 150.n+64 = 151.m+51
=> 150.m = 150.m+m-13
Vì 150.m chia hết cho 150 và 150.n chia hết cho 150 => m-13 chia hết cho 150 => m-13 = 150.b
=> m = 150.b+13 => a = 151 ( 150.b+13) + 51 = 22650.b + 2014
Để a là số nhỏ nhất => b = 0 => a = 2014
Vậy số cần tìm là 2014
1) Tìm số nguyên tố nhỏ hơn 200 biết khi chia nó cho 60 thì số dư là hợp số
2) Tìm 1 số nguyên tố chia cho 30 có số dư là r. Tìm r biết r ko phải là số nguyên tố.
Bài 1 :
Gọi p là số nguyên tố phải tìm.
Ta có: p chia cho 60 thì số dư là hợp số $⇒$⇒ p = 60k + r = 22.3.5k + r với k,r $∈$∈ N ; 0 < r < 60 và r là hợp số.
Do p là số nguyên tố nên r không chia hết các thừa số nguyên tố của p là 2 ; 3 và 5.
Chọn các hợp số nhỏ hơn 60, loại đi các số chia hết cho 2 ta có tập hợp A = {9 ; 15 ; 21 ; 25 ; 27 ; 33 ; 35 ; 39 ; 45 ; 49 ; 21 ; 55 ; 57}
Loại ở tập hợp A các số chia hết cho 3 ta có tập hợp B = {25 ; 35 ; 49 ; 55}
Loại ở tập hợp B các số chia hết cho 5 ta có tập hợp C = {49}
Do đó r = 49. Suy ra p = 60k + 49. Vì p < 200 nên k = 1, khi đó p = 60.1 + 49 = 109 hoặc k = 2, khi đó p = 60.2 + 49 = 169.
Loại p = 169 = 132 là hợp số ⇒ chỉ có p = 109.
Số cần tìm là 109.
2)Gọi số nguyên tố đó là n, ta có n=30k+r (r<30, r nguyên tố)
Vì n là số nguyên tố nên r không thể chia hết cho 2,3,5
Nếu r là hợp số không chia hết cho 2,3,5 thì r nhỏ nhất là 7*7 = 49 không thỏa mãn
Vậy r cũng không thể là hợp số
Kết luận: r=1
Gọi số nguyên tố là p, ta có:
- p = 30k + r. Vì 30= 3.2.5
-30= 3.2.5.k + r
-Vì p là số nguyên tố nên r sẽ không chia hết cho 3,2,5.
-Các số không phải là hợp số mà không chia hết cho 2 là: 1;3;5;7;9;11;13;15;17;19;21;23;25;27;29.
-Loại các số 3;9;15;21;27 vì những số này chia hết cho 3.
- Loại số 5 vì số này chia hết cho 5. Ta còn các số 1,7,13,17,19,29.
-Còn lại bạn tự khai thác nhé!
các số 30 và 17 khi chia cho số nguyên tố a khác 1 thì đều có số dư r. hãy tìm số nguyên tố a và số nguyên tố r
Tìm số nguyên tố nhỏ hơn 200. Biết khi chia nó cho 60 thì số dư là hợp số.
Tìm số nguyên tố <200, biết rằng khi chia nó cho 60 thì số dư là hợp số
tìm số nguyên tố nhỏ hơn 200 biết khi chia nó cho 60 thì số dư là hợp số
Tìm số nguyên tố nhỏ hơn 200, biết rằng khi chia nó cho 60 thì số dư là hợp số.
riiiiiiiiiiiiiiiiiiiiiiiiiiii riiiiiiiiiiiiiiiiiiii là ma đó
Tìm số nguyên tố nhỏ hơn 200, biết rằng khi chia nó cho 60 thì số dư là hợp số
Gọi p là số nguyên tố phải tìm.
Ta có: p chia cho 60 thì số dư là hợp số \(\Rightarrow\) p = 60k + r = 22.3.5k + r với k,r \(\in\) N ; 0 < r < 60 và r là hợp số.
Do p là số nguyên tố nên r không chia hết các thừa số nguyên tố của p là 2 ; 3 và 5.
Chọn các hợp số nhỏ hơn 60, loại đi các số chia hết cho 2 ta có tập hợp A = {9 ; 15 ; 21 ; 25 ; 27 ; 33 ; 35 ; 39 ; 45 ; 49 ; 21 ; 55 ; 57}
Loại ở tập hợp A các số chia hết cho 3 ta có tập hợp B = {25 ; 35 ; 49 ; 55}
Loại ở tập hợp B các số chia hết cho 5 ta có tập hợp C = {49}
Do đó r = 49. Suy ra p = 60k + 49. Vì p < 200 nên k = 1, khi đó p = 60.1 + 49 = 109 hoặc k = 2, khi đó p = 60.2 + 49 = 169.
Loại p = 169 = 132 là hợp số.\(\Rightarrow\) chỉ có p = 109
Vậy số nguyên tố phải tìm là 109.
Bài này mình tự làm nhá, mình xem ở trên mạng chưa có ai giải được bài này đâu, cũng không có ở trong câu hỏi tương tự nên các bạn khác đừng có bắt bẻ mình. Bài này hay và khó đấy nên bạn hỏi câu này, các bạn khác và O-L-M chọn đúng nha !
đinh tuấn việt ơi thảo mai copy bài của cậu đúng ko