\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{990}\)
giúp mik nhé!!
\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{990}\)
giúp mình
Đề thiếu?
\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{9900}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\)
\(=\frac{6}{25}\)
\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{990}\)
Tính nhanh
1/20 + 1/30 + 1/42 + 1/56 +...+ 1/990 = 1/4.5 +1/5.6 +1/6.7 + 1/7.8 +...+ 1/99.100 =1/4 - 1/5 + 1/5 -1/6 + 1/6 -1/7 + 1/7 - 1/8 + ...+1/99 -1/100 =1/4-1/100 = 24/100=6/25
=1/4.5+1/5.6+1/6.8+1/7.8+....1/33.30
=1/4-1/5+1/5-1/6+1/6-1/8+1/7-1/8+...+1/30-1/33
=1/4-1/33
=29/132
\(\frac{1}{20}\)+\(\frac{1}{30}\)+\(\frac{1}{42}\)+\(\frac{1}{56}\)+........+\(\frac{1}{990}\)
1/20 + 1/30 + 1/42 + ... + 1/9900
= 1/4.5 + 1/5.6 + 1/6.7 + ... + 1/99.100
= 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/99 - 1/100
= 1/4 - 1/100
= 6/25
bn ơi,hình nhưa sai đề,số 990 mik ko phân tích ra tích của 2 số tự nhiên liên tiếp được,chắc là sai đề nha bn,bn kiểm tra lại đề rồi đăng câu hỏi khác nhé!!!,để mik xem lại coi.....
kiểm tra nha,nếu mà đúng đề thì để mik xem lại...
T.T
số 990 đúng như cô mình ra mà,cô có phát giaays đó
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)GIÚP MÌNH NHÉ CÁC BẠN AI ĐÚNG MÌNH TÍCH CHO
= 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9
= 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/9
=1-1/9
=8/9
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
= \(1-\frac{1}{9}\)
= \(\frac{8}{9}\)
1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72
= 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9
= 1 - 1/9
= 8/9
\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{990}\) cảm ơn các bạn nha
đúng là sai đề nhưng vẫn phải cảm ơn các bạn nhiều
Trần Thùy Dung nó đã bảo \(990\ne99\cdot100\) rùi mà vẫn tách như v
=\(\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
=\(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
=\(\frac{1}{4}-\frac{1}{100}\)
=\(\frac{24}{100}=\frac{6}{25}\)
Bạn ơi sai rồi \(990\ne99.100\)
Câu 1. Tính nhanh
\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+.....+\frac{1}{37\cdot38\cdot39}\)
Câu 2. Tính nhanh tổng A=
\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{990}\)
\(B1\)
\(=\frac{1}{1}-\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{37}-\frac{1}{38}-\frac{1}{39}\)
\(=1-\frac{1}{39}\)
\(=\frac{38}{39}\)
\(B2\)
\(=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+.....+\frac{1}{99\cdot100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+......+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\)
\(=\frac{25}{100}-\frac{1}{100}\)
\(=\frac{24}{100}\)
\(=\frac{6}{25}\)
Bài 1 :
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(=\frac{1}{1.2}-\frac{1}{38.39}\)
\(=\frac{370}{741}\)
Tớ chỉ biết làm bài 1 thui
1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/37.38.39
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 - 1/3.4 + 1/3.4 - 1/4.5 + 1/37.38 - 1/38.39
= 1/1.2 - 1/38.39
= 370/741
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{81}\)
giúp mình nhé , tính nhanh nhất có thể ( tính thuận tiện )
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{30}+...+\frac{1}{72}+\frac{1}{81}\)
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{8\times9}+\frac{1}{81}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{81}\)
\(A=1-\frac{1}{9}+\frac{1}{81}=\frac{73}{81}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{81}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{81}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{81}\)
\(=1-\frac{1}{9}+\frac{1}{81}\)
\(=\frac{8}{9}+\frac{1}{81}\)
\(=\frac{73}{81}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{8\cdot9}+\frac{1}{81}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{81}\)
\(=1-\frac{1}{9}+\frac{1}{81}\)
\(=\frac{8}{9}+\frac{1}{81}\)
\(=\frac{73}{81}\)
Tính Nhanh
A=\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{210}\)
Giúp mik nha
Bạn kham khảo link này nhé.
Câu hỏi của Lê Phương Thảo - Toán lớp 6 - Học toán với OnlineMath
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{210}\)
\(\Leftrightarrow A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{14.15}\)
\(\Leftrightarrow A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{14}-\frac{1}{15}\)
\(\Leftrightarrow A=\frac{1}{5}-\frac{1}{15}\)
\(\Leftrightarrow A=\frac{2}{15}\)
Tính nhanh :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
Giúp mình nhé , thanks các bạn ^^!~
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)
\(B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(A=1-\frac{1}{10}=\frac{9}{10}\)
b,
\(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}=\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
Ai thấy mình làm đúng thì tích nha.Ai tích mình mình tích lại