Những câu hỏi liên quan
LA
Xem chi tiết
BT
11 tháng 4 2016 lúc 14:06

ta co : (2n+1) chia het cho (2n+1)        (1)
=> 2(2n+1) chia het cho (2n+1) hay (4n-2) chia het cho (2n+1)
Ma (4n-5) chia het cho (2n-1)            (2)
tu (1) va (2) => (4n-2)-(4n-2) chia het cho (2n-1)
=>3chia het cho (2n+1) hay (2n+1) thuoc U(3) ma U(3) = {1;3}
Neu 2n+1=-3=>n=-2
--- 2n+1=-1=>n=-1
--- 2n+1=1=>n=0
--- 2n+1=3=>n=1
vay n={-2;-1;0;1}
dua vao cach tren ma lam

Bình luận (0)
QS
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết
JA
29 tháng 7 2016 lúc 15:20

Bạn có thể tham khảo cách của mình:

Do vai trò bình đẳng của x,y nên ta có thể giả sử x>= y

-TH x=y:

x+1 chia hết cho y

<=> y+1 chia hết cho y

=> y thuộc ước của 1. Mà y thuộc N nên y=1. Do đó ta có x=1 (vì x=y)

Ta có cặp so (x;y)=(1;1)

-TH x>y:

Giả sử x-y=k (k thuộc N* vì x,y là số tự nhiên, x>y). Suy ra y=x-k

Thay vào ta có: y+1 chia hết cho x

                 <=> x-k+1 chia hết cho x

                 Do x>k nên x-k+1 > 0, x là số tự nhiên, x-k+1 chia hết cho x

                 <=> 1-k =0 hoặc >0

+Nếu 1-k=0 thì k=1

Thay vào ta có: x+1 chia hết cho y

                  <=>1+y+1 chia hết cho y <=> y + 2 chia hết cho y. Suy ra y thuộc ước của 2

=> y={1;2}. Vậy x={2;3} tương ứng.

Ta có cặp số x;y=(1;2);(2;3)

+Nếu 1-k>0:

Do k thuộc N* nên 1-k>0 là vô lý

Kết luận: Các cặp số (x;y) phải tìm: (1;1);(1;2);(2;1);(2;3);(3;2)

Bình luận (0)
TC
28 tháng 7 2016 lúc 15:47

Vì vai trò của x, y bình đẳng nên có thể giả sử x≤yx≤y.

- Nếu x = 1 thì x+1=2⋮yx+1=2⋮y ⇒y=1⇒y=1 hoặc 2 ⇒(x,y)=(1,1),(1,2)⇒(x,y)=(1,1),(1,2).

- Nếu x≥2x≥2 thì 2≤x≤y2≤x≤y

Có ⎧⎨⎩x+1⋮yy+1⋮x{x+1⋮yy+1⋮x

⇒(x+1)(y+1)=(xy+x+y+1)⋮xy⇒(x+1)(y+1)=(xy+x+y+1)⋮xy ⇒(x+y+1)⋮xy⇒(x+y+1)⋮xy

⇒x+y+1xy=1x+1y+1xy⇒x+y+1xy=1x+1y+1xy là số nguyên dương.

Mà 2≤x≤y2≤x≤y nên 1x+1y+1xy≤12+12+14=541x+1y+1xy≤12+12+14=54

Từ đó suy ra 1x+1y+1xy=11x+1y+1xy=1 (1)

⇒1=1x+1y+1xy≤1x+1x+12x=52x⇒1=1x+1y+1xy≤1x+1x+12x=52x ⇒2x≤5⇒2x≤5 ⇒⇒ x = 2

Thay vào (1) ta có 12+1y+12y=112+1y+12y=1 ⇒y=3⇒y=3

Vậy các cặp số (x, y) phải tìm là (1, 1), (1, 2), (2, 1), (2, 3), (3, 2).

Bình luận (0)
LN
29 tháng 7 2016 lúc 8:38

 giả sử x≤yx≤y.

- Nếu x = 1 thì x+1=2⋮yx+1=2⋮y ⇒y=1⇒y=1 hoặc 2 ⇒(x,y)=(1,1),(1,2)⇒(x,y)=(1,1),(1,2).

- Nếu x≥2x≥2 thì 2≤x≤y2≤x≤y

Theo đề bài,

⇒(x+1)(y+1)=(xy+x+y+1)⋮xy⇒(x+1)(y+1)=(xy+x+y+1)⋮xy ⇒(x+y+1)⋮xy⇒(x+y+1)⋮xy

⇒x+y+1xy=1x+1y+1xy⇒x+y+1xy=1x+1y+1xy là số nguyên dương.

Mà 2≤x≤y2≤x≤y nên 1x+1y+1xy≤12+12+14=541x+1y+1xy≤12+12+14=54

Từ đó suy ra 1x+1y+1xy=11x+1y+1xy=1 (1)

⇒1=1x+1y+1xy≤1x+1x+12x=52x⇒1=1x+1y+1xy≤1x+1x+12x=52x ⇒2x≤5⇒2x≤5 ⇒⇒ x = 2

Thay vào (1) ta có 12+1y+12y=112+1y+12y=1 ⇒y=3⇒y=3

Vậy các cặp số (x, y) phải tìm là (1, 1), (1, 2), (2, 1), (2, 3), (3, 2

Bình luận (0)
H24
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
PT
8 tháng 6 2015 lúc 8:17

Ta có: x + 1 chia hết cho y => x+1 + y chia hết cho y (vì x+1 chia hết cho y và y cũng chia hết cho y)

          y + 1 chia hết cho x => y+1+x chia hết cho x

=> x + y +1 cùng chia hết cho x và y

=> x + y + 1 - x - y chia hết cho x, y

=> 1 chia hết cho x,y

=> x=1 ; y = 1

 

Bình luận (0)
WR
8 tháng 6 2015 lúc 8:21

x+1+y chia hết cho cả x và y

nhưng chưa chắc x+y+1-x-y lại cùng chia hết cho x và y

như bạn ác mộng ra đáp số cũng đúng đó thôi

Bình luận (0)